array([[ 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255],
[ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255],
[ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255]], dtype=uint8)
对测试图片操作,取得我们需要的,每个数字的像素 .
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
#读取输入图像,预处理
image = cv2.imread(image)
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)
#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
#
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")
print (np.array(gradX).shape)
cv_show('gradX',gradX)
#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
#再来一个闭操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)
# 计算轮廓
thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show('img',cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar 4.0:
if (w > 40 and w 55) and (h > 10 and h 20):
#符合的留下来
locs.append((x, y, w, h))
# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = []
# 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show('group',group)
# 预处理
group = cv2.threshold(group, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('group',group)
# 计算每一组的轮廓
group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0]
# 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show('roi',roi)
# 计算匹配得分
scores = []
# 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append(str(np.argmax(scores)))
# 画出来
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
# 得到结果
output.extend(groupOutput)
# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
# (194, 300)
# Credit Card Type: MasterCard
# Credit Card #: 5412751234567890
到此这篇关于Python如何识别银行卡卡号?的文章就介绍到这了,更多相关Python识别卡号内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!