• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    PyTorch一小时掌握之神经网络分类篇

    概述

    对于 MNIST 手写数据集的具体介绍, 我们在 TensorFlow 中已经详细描述过, 在这里就不多赘述. 有兴趣的同学可以去看看之前的文章: https://www.jb51.net/article/222183.htm

    在上一节的内容里, 我们用 PyTorch 实现了回归任务, 在这一节里, 我们将使用 PyTorch 来解决分类任务.

    导包

    import torchvision
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    import matplotlib.pyplot as plt
    

    设置超参数

    # 设置超参数
    n_epochs = 3
    batch_size_train = 64
    batch_size_test = 1000
    learning_rate = 0.01
    momentum = 0.5
    log_interval = 10
    random_seed = 1
    torch.manual_seed(random_seed)
    

    读取数据

    # 数据读取
    train_loader = torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('./data/', train=True, download=True,
                                   transform=torchvision.transforms.Compose([
                                       torchvision.transforms.ToTensor(),
                                       torchvision.transforms.Normalize(
                                           (0.1307,), (0.3081,))
                                   ])),
        batch_size=batch_size_train, shuffle=True)
        
    test_loader = torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('./data/', train=False, download=True,
                                   transform=torchvision.transforms.Compose([
                                       torchvision.transforms.ToTensor(),
                                       torchvision.transforms.Normalize(
                                           (0.1307,), (0.3081,))
                                   ])),
        batch_size=batch_size_test, shuffle=True)
    
    examples = enumerate(test_loader)
    batch_idx, (example_data, example_targets) = next(examples)
    
    # 调试输出
    print(example_targets)
    print(example_data.shape)

    输出结果:
    tensor([7, 6, 7, 5, 6, 7, 8, 1, 1, 2, 4, 1, 0, 8, 4, 4, 4, 9, 8, 1, 3, 3, 8, 6,
    2, 7, 5, 1, 6, 5, 6, 2, 9, 2, 8, 4, 9, 4, 8, 6, 7, 7, 9, 8, 4, 9, 5, 3,
    1, 0, 9, 1, 7, 3, 7, 0, 9, 2, 5, 1, 8, 9, 3, 7, 8, 4, 1, 9, 0, 3, 1, 2,
    3, 6, 2, 9, 9, 0, 3, 8, 3, 0, 8, 8, 5, 3, 8, 2, 8, 5, 5, 7, 1, 5, 5, 1,
    0, 9, 7, 5, 2, 0, 7, 6, 1, 2, 2, 7, 5, 4, 7, 3, 0, 6, 7, 5, 1, 7, 6, 7,
    2, 1, 9, 1, 9, 2, 7, 6, 8, 8, 8, 4, 6, 0, 0, 2, 3, 0, 1, 7, 8, 7, 4, 1,
    3, 8, 3, 5, 5, 9, 6, 0, 5, 3, 3, 9, 4, 0, 1, 9, 9, 1, 5, 6, 2, 0, 4, 7,
    3, 5, 8, 8, 2, 5, 9, 5, 0, 7, 8, 9, 3, 8, 5, 3, 2, 4, 4, 6, 3, 0, 8, 2,
    7, 0, 5, 2, 0, 6, 2, 6, 3, 6, 6, 7, 9, 3, 4, 1, 6, 2, 8, 4, 7, 7, 2, 7,
    4, 2, 4, 9, 7, 7, 5, 9, 1, 3, 0, 4, 4, 8, 9, 6, 6, 5, 3, 3, 2, 3, 9, 1,
    1, 4, 4, 8, 1, 5, 1, 8, 8, 0, 7, 5, 8, 4, 0, 0, 0, 6, 3, 0, 9, 0, 6, 6,
    9, 8, 1, 2, 3, 7, 6, 1, 5, 9, 3, 9, 3, 2, 5, 9, 9, 5, 4, 9, 3, 9, 6, 0,
    3, 3, 8, 3, 1, 4, 1, 4, 7, 3, 1, 6, 8, 4, 7, 7, 3, 3, 6, 1, 3, 2, 3, 5,
    9, 9, 9, 2, 9, 0, 2, 7, 0, 7, 5, 0, 2, 6, 7, 3, 7, 1, 4, 6, 4, 0, 0, 3,
    2, 1, 9, 3, 5, 5, 1, 6, 4, 7, 4, 6, 4, 4, 9, 7, 4, 1, 5, 4, 8, 7, 5, 9,
    2, 9, 4, 0, 8, 7, 3, 4, 2, 7, 9, 4, 4, 0, 1, 4, 1, 2, 5, 2, 8, 5, 3, 9,
    1, 3, 5, 1, 9, 5, 3, 6, 8, 1, 7, 9, 9, 9, 9, 9, 2, 3, 5, 1, 4, 2, 3, 1,
    1, 3, 8, 2, 8, 1, 9, 2, 9, 0, 7, 3, 5, 8, 3, 7, 8, 5, 6, 4, 1, 9, 7, 1,
    7, 1, 1, 8, 6, 7, 5, 6, 7, 4, 9, 5, 8, 6, 5, 6, 8, 4, 1, 0, 9, 1, 4, 3,
    5, 1, 8, 7, 5, 4, 6, 6, 0, 2, 4, 2, 9, 5, 9, 8, 1, 4, 8, 1, 1, 6, 7, 5,
    9, 1, 1, 7, 8, 7, 5, 5, 2, 6, 5, 8, 1, 0, 7, 2, 2, 4, 3, 9, 7, 3, 5, 7,
    6, 9, 5, 9, 6, 5, 7, 2, 3, 7, 2, 9, 7, 4, 8, 4, 9, 3, 8, 7, 5, 0, 0, 3,
    4, 3, 3, 6, 0, 1, 7, 7, 4, 6, 3, 0, 8, 0, 9, 8, 2, 4, 2, 9, 4, 9, 9, 9,
    7, 7, 6, 8, 2, 4, 9, 3, 0, 4, 4, 1, 5, 7, 7, 6, 9, 7, 0, 2, 4, 2, 1, 4,
    7, 4, 5, 1, 4, 7, 3, 1, 7, 6, 9, 0, 0, 7, 3, 6, 3, 3, 6, 5, 8, 1, 7, 1,
    6, 1, 2, 3, 1, 6, 8, 8, 7, 4, 3, 7, 7, 1, 8, 9, 2, 6, 6, 6, 2, 8, 8, 1,
    6, 0, 3, 0, 5, 1, 3, 2, 4, 1, 5, 5, 7, 3, 5, 6, 2, 1, 8, 0, 2, 0, 8, 4,
    4, 5, 0, 0, 1, 5, 0, 7, 4, 0, 9, 2, 5, 7, 4, 0, 3, 7, 0, 3, 5, 1, 0, 6,
    4, 7, 6, 4, 7, 0, 0, 5, 8, 2, 0, 6, 2, 4, 2, 3, 2, 7, 7, 6, 9, 8, 5, 9,
    7, 1, 3, 4, 3, 1, 8, 0, 3, 0, 7, 4, 9, 0, 8, 1, 5, 7, 3, 2, 2, 0, 7, 3,
    1, 8, 8, 2, 2, 6, 2, 7, 6, 6, 9, 4, 9, 3, 7, 0, 4, 6, 1, 9, 7, 4, 4, 5,
    8, 2, 3, 2, 4, 9, 1, 9, 6, 7, 1, 2, 1, 1, 2, 6, 9, 7, 1, 0, 1, 4, 2, 7,
    7, 8, 3, 2, 8, 2, 7, 6, 1, 1, 9, 1, 0, 9, 1, 3, 9, 3, 7, 6, 5, 6, 2, 0,
    0, 3, 9, 4, 7, 3, 2, 9, 0, 9, 5, 2, 2, 4, 1, 6, 3, 4, 0, 1, 6, 9, 1, 7,
    0, 8, 0, 0, 9, 8, 5, 9, 4, 4, 7, 1, 9, 0, 0, 2, 4, 3, 5, 0, 4, 0, 1, 0,
    5, 8, 1, 8, 3, 3, 2, 1, 2, 6, 8, 2, 5, 3, 7, 9, 3, 6, 2, 2, 6, 2, 7, 7,
    6, 1, 8, 0, 3, 5, 7, 5, 0, 8, 6, 7, 2, 4, 1, 4, 3, 7, 7, 2, 9, 3, 5, 5,
    9, 4, 8, 7, 6, 7, 4, 9, 2, 7, 7, 1, 0, 7, 2, 8, 0, 3, 5, 4, 5, 1, 5, 7,
    6, 7, 3, 5, 3, 4, 5, 3, 4, 3, 2, 3, 1, 7, 4, 4, 8, 5, 5, 3, 2, 2, 9, 5,
    8, 2, 0, 6, 0, 7, 9, 9, 6, 1, 6, 6, 2, 3, 7, 4, 7, 5, 2, 9, 4, 2, 9, 0,
    8, 1, 7, 5, 5, 7, 0, 5, 2, 9, 5, 2, 3, 4, 6, 0, 0, 2, 9, 2, 0, 5, 4, 8,
    9, 0, 9, 1, 3, 4, 1, 8, 0, 0, 4, 0, 8, 5, 9, 8])
    torch.Size([1000, 1, 28, 28])

    可视化展示

    # 画图 (前6个)
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
        plt.title("Ground Truth: {}".format(example_targets[i]))
        plt.xticks([])
        plt.yticks([])
    plt.show()
    

    输出结果:

    建立模型

    # 创建model
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)
    
        def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            return F.log_softmax(x)
    
    
    network = Net()
    optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                          momentum=momentum)
    

    训练模型

    # 训练
    train_losses = []
    train_counter = []
    test_losses = []
    test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]
    
    
    def train(epoch):
        network.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            optimizer.zero_grad()
            output = network(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item()))
                train_losses.append(loss.item())
                train_counter.append(
                    (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
                torch.save(network.state_dict(), './model.pth')
                torch.save(optimizer.state_dict(), './optimizer.pth')
    
    
    def test():
        network.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                output = network(data)
                test_loss += F.nll_loss(output, target, size_average=False).item()
                pred = output.data.max(1, keepdim=True)[1]
                correct += pred.eq(target.data.view_as(pred)).sum()
        test_loss /= len(test_loader.dataset)
        test_losses.append(test_loss)
        print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
    
    for epoch in range(1, n_epochs + 1):
        train(epoch)
        test()

    输出结果:
    Train Epoch: 1 [0/60000 (0%)] Loss: 2.297471
    Train Epoch: 1 [6400/60000 (11%)] Loss: 1.934886
    Train Epoch: 1 [12800/60000 (21%)] Loss: 1.242982
    Train Epoch: 1 [19200/60000 (32%)] Loss: 0.979296
    Train Epoch: 1 [25600/60000 (43%)] Loss: 1.277279
    Train Epoch: 1 [32000/60000 (53%)] Loss: 0.721533
    Train Epoch: 1 [38400/60000 (64%)] Loss: 0.759595
    Train Epoch: 1 [44800/60000 (75%)] Loss: 0.469635
    Train Epoch: 1 [51200/60000 (85%)] Loss: 0.422614
    Train Epoch: 1 [57600/60000 (96%)] Loss: 0.417603

    Test set: Avg. loss: 0.1988, Accuracy: 9431/10000 (94%)

    Train Epoch: 2 [0/60000 (0%)] Loss: 0.277207
    Train Epoch: 2 [6400/60000 (11%)] Loss: 0.328862
    Train Epoch: 2 [12800/60000 (21%)] Loss: 0.396312
    Train Epoch: 2 [19200/60000 (32%)] Loss: 0.301772
    Train Epoch: 2 [25600/60000 (43%)] Loss: 0.253600
    Train Epoch: 2 [32000/60000 (53%)] Loss: 0.217821
    Train Epoch: 2 [38400/60000 (64%)] Loss: 0.395815
    Train Epoch: 2 [44800/60000 (75%)] Loss: 0.265737
    Train Epoch: 2 [51200/60000 (85%)] Loss: 0.323627
    Train Epoch: 2 [57600/60000 (96%)] Loss: 0.236692

    Test set: Avg. loss: 0.1233, Accuracy: 9622/10000 (96%)

    Train Epoch: 3 [0/60000 (0%)] Loss: 0.500148
    Train Epoch: 3 [6400/60000 (11%)] Loss: 0.338118
    Train Epoch: 3 [12800/60000 (21%)] Loss: 0.452308
    Train Epoch: 3 [19200/60000 (32%)] Loss: 0.374940
    Train Epoch: 3 [25600/60000 (43%)] Loss: 0.323300
    Train Epoch: 3 [32000/60000 (53%)] Loss: 0.203830
    Train Epoch: 3 [38400/60000 (64%)] Loss: 0.379557
    Train Epoch: 3 [44800/60000 (75%)] Loss: 0.334822
    Train Epoch: 3 [51200/60000 (85%)] Loss: 0.361676
    Train Epoch: 3 [57600/60000 (96%)] Loss: 0.218833

    Test set: Avg. loss: 0.0911, Accuracy: 9723/10000 (97%)

    完整代码

    import torchvision
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    import matplotlib.pyplot as plt
    
    # 设置超参数
    n_epochs = 3
    batch_size_train = 64
    batch_size_test = 1000
    learning_rate = 0.01
    momentum = 0.5
    log_interval = 100
    random_seed = 1
    torch.manual_seed(random_seed)
    
    # 数据读取
    train_loader = torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('./data/', train=True, download=True,
                                   transform=torchvision.transforms.Compose([
                                       torchvision.transforms.ToTensor(),
                                       torchvision.transforms.Normalize(
                                           (0.1307,), (0.3081,))
                                   ])),
        batch_size=batch_size_train, shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('./data/', train=False, download=True,
                                   transform=torchvision.transforms.Compose([
                                       torchvision.transforms.ToTensor(),
                                       torchvision.transforms.Normalize(
                                           (0.1307,), (0.3081,))
                                   ])),
        batch_size=batch_size_test, shuffle=True)
    
    examples = enumerate(test_loader)
    batch_idx, (example_data, example_targets) = next(examples)
    
    # 调试输出
    print(example_targets)
    print(example_data.shape)
    
    # 画图 (前6个)
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
        plt.title("Ground Truth: {}".format(example_targets[i]))
        plt.xticks([])
        plt.yticks([])
    plt.show()
    
    
    # 创建model
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)
    
        def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            return F.log_softmax(x)
    
    
    network = Net()
    optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                          momentum=momentum)
    
    # 训练
    train_losses = []
    train_counter = []
    test_losses = []
    test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]
    
    
    def train(epoch):
        network.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            optimizer.zero_grad()
            output = network(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item()))
                train_losses.append(loss.item())
                train_counter.append(
                    (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
                torch.save(network.state_dict(), './model.pth')
                torch.save(optimizer.state_dict(), './optimizer.pth')
    
    
    def test():
        network.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                output = network(data)
                test_loss += F.nll_loss(output, target, size_average=False).item()
                pred = output.data.max(1, keepdim=True)[1]
                correct += pred.eq(target.data.view_as(pred)).sum()
        test_loss /= len(test_loader.dataset)
        test_losses.append(test_loss)
        print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
    
    for epoch in range(1, n_epochs + 1):
        train(epoch)
        test()
    

    到此这篇关于PyTorch一小时掌握之神经网络分类篇的文章就介绍到这了,更多相关PyTorch神经网络分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • PyTorch一小时掌握之autograd机制篇
    • PyTorch一小时掌握之神经网络气温预测篇
    • PyTorch一小时掌握之图像识别实战篇
    • PyTorch一小时掌握之基本操作篇
    上一篇:由浅入深学习TensorFlow MNIST 数据集
    下一篇:Python ord函数()案例详解
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    PyTorch一小时掌握之神经网络分类篇 PyTorch,一小时,掌握,之,神经网络,