• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    PyTorch一小时掌握之autograd机制篇

    概述

    PyTorch 干的最厉害的一件事情就是帮我们把反向传播全部计算好了.

    代码实现

    手动定义求导

    import torch
    
    # 方法一
    x = torch.randn(3, 4, requires_grad=True)
    
    # 方法二
    x = torch.randn(3,4)
    x.requires_grad = True
    
    b = torch.randn(3, 4, requires_grad=True)
    t = x + b
    y = t.sum()
    
    print(y)
    print(y.backward())
    print(b.grad)
    
    print(x.requires_grad)
    print(b.requires_grad)
    print(t.requires_grad)
    
    

    输出结果:
    tensor(1.1532, grad_fn=SumBackward0>)
    None
    tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
    True
    True
    True

    计算流量

    # 计算流量
    x = torch.rand(1)
    w = torch.rand(1, requires_grad=True)
    b = torch.rand(1, requires_grad=True)
    y = w * x
    z = y + b
    
    print(x.requires_grad, w.requires_grad,b.requires_grad, z.requires_grad)
    print(x.is_leaf, w.is_leaf, b.is_leaf, y.is_leaf,z.is_leaf)

    输出结果:
    False True True True
    True True True False False

    反向传播计算

    # 反向传播
    z.backward(retain_graph= True)  # 如果不清空会累加起来
    print(w.grad)
    print(b.grad)

    输出结果:
    tensor([0.1485])
    tensor([1.])

    线性回归

    导包

    import numpy as np
    import torch
    import torch.nn as nn
    

    构造 x, y

    # 构造数据
    X_values = [i for i in range(11)]
    X_train = np.array(X_values, dtype=np.float32)
    X_train = X_train.reshape(-1, 1)
    print(X_train.shape)  # (11, 1)
    
    y_values = [2 * i + 1 for i in X_values]
    y_train = np.array(y_values, dtype=np.float32)
    y_train = y_train.reshape(-1,1)
    print(y_train.shape)  # (11, 1)

    输出结果:
    (11, 1)
    (11, 1)

    构造模型

    # 构造模型
    class LinerRegressionModel(nn.Module):
        def __init__(self, input_dim, output_dim):
            super(LinerRegressionModel, self).__init__()
            self.liner = nn.Linear(input_dim, output_dim)
    
        def forward(self, x):
            out = self.liner(x)
            return out
    
    
    input_dim = 1
    output_dim = 1
    
    model = LinerRegressionModel(input_dim, output_dim)
    print(model)

    输出结果:
    LinerRegressionModel(
    (liner): Linear(in_features=1, out_features=1, bias=True)
    )

    参数 损失函数

    # 超参数
    enpochs = 1000
    learning_rate = 0.01
    
    # 损失函数
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
    criterion = nn.MSELoss()
    

    训练模型

    # 训练模型
    for epoch in range(enpochs):
        # 转成tensor
        inputs = torch.from_numpy(X_train)
        labels = torch.from_numpy(y_train)
    
        # 梯度每次迭代清零
        optimizer.zero_grad()
    
        # 前向传播
        outputs = model(inputs)
    
        # 计算损失
        loss = criterion(outputs, labels)
    
        # 反向传播
        loss.backward()
    
        # 更新参数
        optimizer.step()
        if epoch % 50 == 0:
            print("epoch {}, loss {}".format(epoch, loss.item()))

    输出结果:
    epoch 0, loss 114.47456359863281
    epoch 50, loss 0.00021522105089388788
    epoch 100, loss 0.00012275540211703628
    epoch 150, loss 7.001651829341426e-05
    epoch 200, loss 3.9934264350449666e-05
    epoch 250, loss 2.2777328922529705e-05
    epoch 300, loss 1.2990592040296178e-05
    epoch 350, loss 7.409254521917319e-06
    epoch 400, loss 4.227155841363128e-06
    epoch 450, loss 2.410347860859474e-06
    epoch 500, loss 1.3751249525739695e-06
    epoch 550, loss 7.844975016269018e-07
    epoch 600, loss 4.4756839656656666e-07
    epoch 650, loss 2.5517596213830984e-07
    epoch 700, loss 1.4577410922811396e-07
    epoch 750, loss 8.30393886985803e-08
    epoch 800, loss 4.747753479250605e-08
    epoch 850, loss 2.709844615367274e-08
    epoch 900, loss 1.5436164346738224e-08
    epoch 950, loss 8.783858973515635e-09

    完整代码

    import numpy as np
    import torch
    import torch.nn as nn
    
    # 构造数据
    X_values = [i for i in range(11)]
    X_train = np.array(X_values, dtype=np.float32)
    X_train = X_train.reshape(-1, 1)
    print(X_train.shape)  # (11, 1)
    
    y_values = [2 * i + 1 for i in X_values]
    y_train = np.array(y_values, dtype=np.float32)
    y_train = y_train.reshape(-1,1)
    print(y_train.shape)  # (11, 1)
    
    # 构造模型
    class LinerRegressionModel(nn.Module):
        def __init__(self, input_dim, output_dim):
            super(LinerRegressionModel, self).__init__()
            self.liner = nn.Linear(input_dim, output_dim)
    
        def forward(self, x):
            out = self.liner(x)
            return out
    
    
    input_dim = 1
    output_dim = 1
    
    model = LinerRegressionModel(input_dim, output_dim)
    print(model)
    
    # 超参数
    enpochs = 1000
    learning_rate = 0.01
    
    # 损失函数
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
    criterion = nn.MSELoss()
    
    # 训练模型
    for epoch in range(enpochs):
        # 转成tensor
        inputs = torch.from_numpy(X_train)
        labels = torch.from_numpy(y_train)
    
        # 梯度每次迭代清零
        optimizer.zero_grad()
    
        # 前向传播
        outputs = model(inputs)
    
        # 计算损失
        loss = criterion(outputs, labels)
    
        # 反向传播
        loss.backward()
    
        # 更新参数
        optimizer.step()
        if epoch % 50 == 0:
            print("epoch {}, loss {}".format(epoch, loss.item()))
    

    到此这篇关于PyTorch一小时掌握之autograd机制篇的文章就介绍到这了,更多相关PyTorch autograd内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • PyTorch一小时掌握之神经网络气温预测篇
    • PyTorch一小时掌握之神经网络分类篇
    • PyTorch一小时掌握之图像识别实战篇
    • PyTorch一小时掌握之基本操作篇
    上一篇:pytorch教程resnet.py的实现文件源码分析
    下一篇:浅析form标签中的GET和POST提交方式区别
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    PyTorch一小时掌握之autograd机制篇 PyTorch,一小时,掌握,之,autograd,