• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    一小时学会TensorFlow2之Fashion Mnist

    描述

    Fashion Mnist 是一个类似于 Mnist 的图像数据集. 涵盖 10 种类别的 7 万 (6 万训练集 + 1 万测试集) 个不同商品的图片.

    Tensorboard

    Tensorboard 是 tensorflow 的一个可视化工具.

    创建 summary

    我们可以通过tf.summary.create_file_writer(file_path)来创建一个新的 summary 实例.

    例子:

    # 将当前时间作为子文件名
    current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    
    # 监听的文件的路径
    log_dir = 'logs/' + current_time
    
    # 创建writer
    summary_writer = tf.summary.create_file_writer(log_dir)
    

    存入数据

    通过tf.summary.scalar我们可以向 summary 对象存入数据.

    格式:

    tf.summary.scalar(
        name, data, step=None, description=None
    )
    

    例子:

    with summary_writer.as_default():
        tf.summary.scalar("train-loss", float(Cross_Entropy), step=step)
    

    metrics

    metrics.Mean()

    metrics.Mean()可以帮助我们计算平均数.

    格式:

    tf.keras.metrics.Mean(
        name='mean', dtype=None
    )
    

    例子:

    # 准确率表
    loss_meter = tf.keras.metrics.Mean()
    

    metrics.Accuracy()

    格式:

    tf.keras.metrics.Accuracy(
        name='accuracy', dtype=None
    )
    

    例子:

    # 损失表
    acc_meter = tf.keras.metrics.Accuracy()
    

    变量更新 重置

    我们可以通过update_state来实现变量更新, 通过rest_state来实现变量重置.

    例如:

    # 跟新损失
    loss_meter.update_state(Cross_Entropy)
    
    # 重置
    loss_meter.reset_state()
    

    案例

    pre_process 函数

    def pre_process(x, y):
        """
        数据预处理
        :param x: 特征值
        :param y: 目标值
        :return: 返回处理好的x, y
        """
        # 转换x
        x = tf.cast(x, tf.float32) / 255
        x = tf.reshape(x, [-1, 784])
    
        # 转换y
        y = tf.cast(y, dtype=tf.int32)
        y = tf.one_hot(y, depth=10)
    
        return x, y
    

    get_data 函数

    def get_data():
        """
        获取数据
        :return: 返回分批完的训练集和测试集
        """
    
        # 获取数据
        (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
    
        # 分割训练集
        train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)
        train_db = train_db.batch(batch_size).map(pre_process)
    
        # 分割测试集
        test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
        test_db = test_db.batch(batch_size).map(pre_process)
    
        # 返回
        return train_db, test_db
    

    train 函数

    def train(epoch, train_db):
        """
        训练数据
        :param train_db: 分批的数据集
        :return: 无返回值
        """
        for step, (x, y) in enumerate(train_db):
            with tf.GradientTape() as tape:
    
                # 获取模型输出结果
                logits = model(x)
    
                # 计算交叉熵
                Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)
                Cross_Entropy = tf.reduce_sum(Cross_Entropy)
    
                # 跟新损失
                loss_meter.update_state(Cross_Entropy)
    
            # 计算梯度
            grads = tape.gradient(Cross_Entropy, model.trainable_variables)
    
            # 跟新参数
            optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
            # 每100批调试输出一下误差
            if step % 100 == 0:
                print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())
    
                # 重置
                loss_meter.reset_state()
    
                # 可视化
                with summary_writer.as_default():
                    tf.summary.scalar("train-loss", float(Cross_Entropy), step= epoch * 235 + step)
    

    test 函数

    def test(epoch, test_db):
        """
        测试模型
        :param epoch: 轮数
        :param test_db: 分批的测试集
        :return: 无返回值
        """
    
        # 重置
        acc_meter.reset_state()
    
        for x, y in test_db:
            # 获取模型输出结果
            logits = model(x)
    
            # 预测结果
            pred = tf.argmax(logits, axis=1)
    
            # 从one_hot编码变回来
            y = tf.argmax(y, axis=1)
    
            # 计算准确率
            acc_meter.update_state(y, pred)
    
        # 调试输出
        print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )
    
        # 可视化
        with summary_writer.as_default():
            tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)
    

    main 函数

    def main():
        """
        主函数
        :return: 无返回值
        """
    
        # 获取数据
        train_db, test_db = get_data()
    
        # 轮期
        for epoch in range(iteration_num):
            train(epoch, train_db)
            test(epoch, test_db)
    

    完整代码

    import datetime
    import tensorflow as tf
    
    # 定义超参数
    batch_size = 256  # 一次训练的样本数目
    learning_rate = 0.001  # 学习率
    iteration_num = 20  # 迭代次数
    
    # 优化器
    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
    
    # 准确率表
    loss_meter = tf.keras.metrics.Mean()
    
    # 损失表
    acc_meter = tf.keras.metrics.Accuracy()
    
    # 可视化
    current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    log_dir = 'logs/' + current_time
    summary_writer = tf.summary.create_file_writer(log_dir)  # 创建writer
    
    # 模型
    model = tf.keras.Sequential([
        tf.keras.layers.Dense(256, activation=tf.nn.relu),
        tf.keras.layers.Dense(128, activation=tf.nn.relu),
        tf.keras.layers.Dense(64, activation=tf.nn.relu),
        tf.keras.layers.Dense(32, activation=tf.nn.relu),
        tf.keras.layers.Dense(10)
    ])
    
    # 调试输出summary
    model.build(input_shape=[None, 28 * 28])
    print(model.summary())
    
    
    def pre_process(x, y):
        """
        数据预处理
        :param x: 特征值
        :param y: 目标值
        :return: 返回处理好的x, y
        """
        # 转换x
        x = tf.cast(x, tf.float32) / 255
        x = tf.reshape(x, [-1, 784])
    
        # 转换y
        y = tf.cast(y, dtype=tf.int32)
        y = tf.one_hot(y, depth=10)
    
        return x, y
    
    
    def get_data():
        """
        获取数据
        :return: 返回分批完的训练集和测试集
        """
    
        # 获取数据
        (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
    
        # 分割训练集
        train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)
        train_db = train_db.batch(batch_size).map(pre_process)
    
        # 分割测试集
        test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
        test_db = test_db.batch(batch_size).map(pre_process)
    
        # 返回
        return train_db, test_db
    
    
    def train(epoch, train_db):
        """
        训练数据
        :param train_db: 分批的数据集
        :return: 无返回值
        """
        for step, (x, y) in enumerate(train_db):
            with tf.GradientTape() as tape:
    
                # 获取模型输出结果
                logits = model(x)
    
                # 计算交叉熵
                Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)
                Cross_Entropy = tf.reduce_sum(Cross_Entropy)
    
                # 跟新损失
                loss_meter.update_state(Cross_Entropy)
    
            # 计算梯度
            grads = tape.gradient(Cross_Entropy, model.trainable_variables)
    
            # 跟新参数
            optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
            # 每100批调试输出一下误差
            if step % 100 == 0:
                print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())
    
                # 重置
                loss_meter.reset_state()
    
                # 可视化
                with summary_writer.as_default():
                    tf.summary.scalar("train-loss", float(Cross_Entropy), step=epoch * 235 + step)
    
    
    def test(epoch, test_db):
        """
        测试模型
        :param epoch: 轮数
        :param test_db: 分批的测试集
        :return: 无返回值
        """
    
        # 重置
        acc_meter.reset_state()
    
        for x, y in test_db:
            # 获取模型输出结果
            logits = model(x)
    
            # 预测结果
            pred = tf.argmax(logits, axis=1)
    
            # 从one_hot编码变回来
            y = tf.argmax(y, axis=1)
    
            # 计算准确率
            acc_meter.update_state(y, pred)
    
        # 调试输出
        print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )
    
        # 可视化
        with summary_writer.as_default():
            tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)
    
    
    def main():
        """
        主函数
        :return: 无返回值
        """
    
        # 获取数据
        train_db, test_db = get_data()
    
        # 轮期
        for epoch in range(iteration_num):
            train(epoch, train_db)
            test(epoch, test_db)
    
    
    if __name__ == "__main__":
        main()
    

    输出结果:

    Model: "sequential"
    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    dense (Dense) (None, 256) 200960
    _________________________________________________________________
    dense_1 (Dense) (None, 128) 32896
    _________________________________________________________________
    dense_2 (Dense) (None, 64) 8256
    _________________________________________________________________
    dense_3 (Dense) (None, 32) 2080
    _________________________________________________________________
    dense_4 (Dense) (None, 10) 330
    =================================================================
    Total params: 244,522
    Trainable params: 244,522
    Non-trainable params: 0
    _________________________________________________________________
    None
    2021-06-14 18:01:27.399812: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
    step: 0 Cross_Entropy: 591.5974
    step: 100 Cross_Entropy: 196.49309
    step: 200 Cross_Entropy: 125.2562
    epoch: 1 Accuracy: 84.72999930381775 %
    step: 0 Cross_Entropy: 107.64579
    step: 100 Cross_Entropy: 105.854385
    step: 200 Cross_Entropy: 99.545975
    epoch: 2 Accuracy: 85.83999872207642 %
    step: 0 Cross_Entropy: 95.42945
    step: 100 Cross_Entropy: 91.366234
    step: 200 Cross_Entropy: 90.84072
    epoch: 3 Accuracy: 86.69999837875366 %
    step: 0 Cross_Entropy: 82.03317
    step: 100 Cross_Entropy: 83.20552
    step: 200 Cross_Entropy: 81.57012
    epoch: 4 Accuracy: 86.11000180244446 %
    step: 0 Cross_Entropy: 82.94046
    step: 100 Cross_Entropy: 77.56677
    step: 200 Cross_Entropy: 76.996346
    epoch: 5 Accuracy: 87.27999925613403 %
    step: 0 Cross_Entropy: 75.59219
    step: 100 Cross_Entropy: 71.70899
    step: 200 Cross_Entropy: 74.15144
    epoch: 6 Accuracy: 87.29000091552734 %
    step: 0 Cross_Entropy: 76.65844
    step: 100 Cross_Entropy: 70.09151
    step: 200 Cross_Entropy: 70.84446
    epoch: 7 Accuracy: 88.27999830245972 %
    step: 0 Cross_Entropy: 67.50707
    step: 100 Cross_Entropy: 64.85907
    step: 200 Cross_Entropy: 68.63099
    epoch: 8 Accuracy: 88.41999769210815 %
    step: 0 Cross_Entropy: 65.50318
    step: 100 Cross_Entropy: 62.2706
    step: 200 Cross_Entropy: 63.80803
    epoch: 9 Accuracy: 86.21000051498413 %
    step: 0 Cross_Entropy: 66.95486
    step: 100 Cross_Entropy: 61.84385
    step: 200 Cross_Entropy: 62.18851
    epoch: 10 Accuracy: 88.45999836921692 %
    step: 0 Cross_Entropy: 59.779297
    step: 100 Cross_Entropy: 58.602314
    step: 200 Cross_Entropy: 59.837025
    epoch: 11 Accuracy: 88.66000175476074 %
    step: 0 Cross_Entropy: 58.10068
    step: 100 Cross_Entropy: 55.097878
    step: 200 Cross_Entropy: 59.906315
    epoch: 12 Accuracy: 88.70999813079834 %
    step: 0 Cross_Entropy: 57.584858
    step: 100 Cross_Entropy: 54.95376
    step: 200 Cross_Entropy: 55.797752
    epoch: 13 Accuracy: 88.44000101089478 %
    step: 0 Cross_Entropy: 53.54782
    step: 100 Cross_Entropy: 53.62939
    step: 200 Cross_Entropy: 54.632828
    epoch: 14 Accuracy: 87.02999949455261 %
    step: 0 Cross_Entropy: 54.387398
    step: 100 Cross_Entropy: 52.323734
    step: 200 Cross_Entropy: 53.968185
    epoch: 15 Accuracy: 88.98000121116638 %
    step: 0 Cross_Entropy: 50.468914
    step: 100 Cross_Entropy: 50.79311
    step: 200 Cross_Entropy: 51.296227
    epoch: 16 Accuracy: 88.67999911308289 %
    step: 0 Cross_Entropy: 48.753258
    step: 100 Cross_Entropy: 46.809692
    step: 200 Cross_Entropy: 48.08208
    epoch: 17 Accuracy: 89.10999894142151 %
    step: 0 Cross_Entropy: 46.830627
    step: 100 Cross_Entropy: 47.208813
    step: 200 Cross_Entropy: 48.671318
    epoch: 18 Accuracy: 88.77999782562256 %
    step: 0 Cross_Entropy: 46.15514
    step: 100 Cross_Entropy: 45.026627
    step: 200 Cross_Entropy: 45.371685
    epoch: 19 Accuracy: 88.7399971485138 %
    step: 0 Cross_Entropy: 47.696465
    step: 100 Cross_Entropy: 41.52749
    step: 200 Cross_Entropy: 46.71362
    epoch: 20 Accuracy: 89.56000208854675 %

    可视化

    到此这篇关于一小时学会TensorFlow2之Fashion Mnist的文章就介绍到这了,更多相关TensorFlow2 Fashion Mnist内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • 深度学习tensorflow基础mnist
    • 由浅入深学习TensorFlow MNIST 数据集
    上一篇:一小时学会TensorFlow2之全连接层
    下一篇:详解PyQt5 GUI 接收UDP数据并动态绘图的过程(多线程间信号传递)
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    一小时学会TensorFlow2之Fashion Mnist 一小时,学会,TensorFlow2,之,