• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python破解极验滑动验证码详细步骤

    极验滑动验证码

    以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/。

    现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站

    对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤

    1、输入用户名,密码

    2、点击按钮验证,弹出没有缺口的图

    3、获得没有缺口的图片

    4、点击滑动按钮,弹出有缺口的图

    5、获得有缺口的图片

    6、对比两张图片,找出缺口,即滑动的位移

    7、按照人的行为行为习惯,把总位移切成一段段小的位移

    8、按照位移移动

    9、完成登录

    实现

    位移移动需要的基础知识

    位移移动相当于匀变速直线运动,类似于小汽车从起点开始运行到终点的过程(首先为匀加速,然后再匀减速)。

    其中a为加速度,且为恒量(即单位时间内的加速度是不变的),t为时间

    位移移动的代码实现

    def get_track(distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+(1/2)at²
        ③v²-v0²=2as
    
        :param distance: 需要移动的距离
        :return: 存放每0.2秒移动的距离
        '''
        # 初速度
        v=0
        # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.1
        # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        # 当前的位移
        current=0
        # 到达mid值开始减速
        mid=distance * 4/5
    
        distance += 10  # 先滑过一点,最后再反着滑动回来
    
        while current  distance:
            if current  mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a = 2  # 加速运动
            else:
                a = -3 # 减速运动
    
            # 初速度
            v0 = v
            # 0.2秒时间内的位移
            s = v0*t+0.5*a*(t**2)
            # 当前的位置
            current += s
            # 添加到轨迹列表
            tracks.append(round(s))
    
            # 速度已经达到v,该速度作为下次的初速度
            v= v0+a*t
    
        # 反着滑动到大概准确位置
        for i in range(3):
           tracks.append(-2)
        for i in range(4):
           tracks.append(-1)
        return tracks

    对比两张图片,找出缺口

    def get_distance(image1,image2):
        '''
          拿到滑动验证码需要移动的距离
          :param image1:没有缺口的图片对象
          :param image2:带缺口的图片对象
          :return:需要移动的距离
          '''
        # print('size', image1.size)
    
        threshold = 50
        for i in range(0,image1.size[0]):  # 260
            for j in range(0,image1.size[1]):  # 160
                pixel1 = image1.getpixel((i,j))
                pixel2 = image2.getpixel((i,j))
                res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
                res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
                res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
                if res_R > threshold and res_G > threshold and res_B > threshold:
                    return i  # 需要移动的距离

    获得图片

    def merge_image(image_file,location_list):
        """
         拼接图片
        :param image_file:
        :param location_list:
        :return:
        """
        im = Image.open(image_file)
        im.save('code.jpg')
        new_im = Image.new('RGB',(260,116))
        # 把无序的图片 切成52张小图片
        im_list_upper = []
        im_list_down = []
        # print(location_list)
        for location in location_list:
            # print(location['y'])
            if location['y'] == -58: # 上半边
                im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
            if location['y'] == 0:  # 下半边
                im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))
    
        x_offset = 0
        for im in im_list_upper:
            new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
            x_offset += im.size[0]
    
        x_offset = 0
        for im in im_list_down:
            new_im.paste(im,(x_offset,58))
            x_offset += im.size[0]
        new_im.show()
        return new_im
    
    def get_image(driver,div_path):
        '''
        下载无序的图片  然后进行拼接 获得完整的图片
        :param driver:
        :param div_path:
        :return:
        '''
        time.sleep(2)
        background_images = driver.find_elements_by_xpath(div_path)
        location_list = []
        for background_image in background_images:
            location = {}
            result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
            # print(result)
            location['x'] = int(result[0][1])
            location['y'] = int(result[0][2])
    
            image_url = result[0][0]
            location_list.append(location)
    
        print('==================================')
        image_url = image_url.replace('webp','jpg')
        # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
        image_result = requests.get(image_url).content
        # with open('1.jpg','wb') as f:
        #     f.write(image_result)
        image_file = BytesIO(image_result) # 是一张无序的图片
        image = merge_image(image_file,location_list)
    
        return image

    按照位移移动

    print('第一步,点击滑动按钮')
        ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
        time.sleep(1)
        print('第二步,拖动元素')
        for track in track_list:
             ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)
        if l100:
            ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform()
        else:
            ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()
        time.sleep(1)
        print('第三步,释放鼠标')
        ActionChains(driver).release(on_element=element).perform()

    详细代码

    from selenium import webdriver
    from selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的
    from selenium.webdriver.common.action_chains import ActionChains  #拖拽
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.common.exceptions import TimeoutException, NoSuchElementException
    from selenium.webdriver.common.by import By
    from PIL import Image
    import requests
    import time
    import re
    import random
    from io import BytesIO
    
    
    def merge_image(image_file,location_list):
        """
         拼接图片
        :param image_file:
        :param location_list:
        :return:
        """
        im = Image.open(image_file)
        im.save('code.jpg')
        new_im = Image.new('RGB',(260,116))
        # 把无序的图片 切成52张小图片
        im_list_upper = []
        im_list_down = []
        # print(location_list)
        for location in location_list:
            # print(location['y'])
            if location['y'] == -58: # 上半边
                im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
            if location['y'] == 0:  # 下半边
                im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))
    
        x_offset = 0
        for im in im_list_upper:
            new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
            x_offset += im.size[0]
    
        x_offset = 0
        for im in im_list_down:
            new_im.paste(im,(x_offset,58))
            x_offset += im.size[0]
        new_im.show()
        return new_im
    
    def get_image(driver,div_path):
        '''
        下载无序的图片  然后进行拼接 获得完整的图片
        :param driver:
        :param div_path:
        :return:
        '''
        time.sleep(2)
        background_images = driver.find_elements_by_xpath(div_path)
        location_list = []
        for background_image in background_images:
            location = {}
            result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
            # print(result)
            location['x'] = int(result[0][1])
            location['y'] = int(result[0][2])
    
            image_url = result[0][0]
            location_list.append(location)
    
        print('==================================')
        image_url = image_url.replace('webp','jpg')
        # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
        image_result = requests.get(image_url).content
        # with open('1.jpg','wb') as f:
        #     f.write(image_result)
        image_file = BytesIO(image_result) # 是一张无序的图片
        image = merge_image(image_file,location_list)
    
        return image
    
    def get_track(distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+(1/2)at²
        ③v²-v0²=2as
    
        :param distance: 需要移动的距离
        :return: 存放每0.2秒移动的距离
        '''
        # 初速度
        v=0
        # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.2
        # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        # 当前的位移
        current=0
        # 到达mid值开始减速
        mid=distance * 7/8
    
        distance += 10  # 先滑过一点,最后再反着滑动回来
        # a = random.randint(1,3)
        while current  distance:
            if current  mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a = random.randint(2,4)  # 加速运动
            else:
                a = -random.randint(3,5) # 减速运动
    
            # 初速度
            v0 = v
            # 0.2秒时间内的位移
            s = v0*t+0.5*a*(t**2)
            # 当前的位置
            current += s
            # 添加到轨迹列表
            tracks.append(round(s))
    
            # 速度已经达到v,该速度作为下次的初速度
            v= v0+a*t
    
        # 反着滑动到大概准确位置
        for i in range(4):
           tracks.append(-random.randint(2,3))
        for i in range(4):
           tracks.append(-random.randint(1,3))
        return tracks
    
    
    def get_distance(image1,image2):
        '''
          拿到滑动验证码需要移动的距离
          :param image1:没有缺口的图片对象
          :param image2:带缺口的图片对象
          :return:需要移动的距离
          '''
        # print('size', image1.size)
    
        threshold = 50
        for i in range(0,image1.size[0]):  # 260
            for j in range(0,image1.size[1]):  # 160
                pixel1 = image1.getpixel((i,j))
                pixel2 = image2.getpixel((i,j))
                res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
                res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
                res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
                if res_R > threshold and res_G > threshold and res_B > threshold:
                    return i  # 需要移动的距离
    
    
    
    def main_check_code(driver, element):
        """
         拖动识别验证码
        :param driver: 
        :param element: 
        :return: 
        """
        image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div')
        image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div')
        # 图片上 缺口的位置的x坐标
    
        # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
        l = get_distance(image1, image2)
        print('l=',l)
        # 3 获得移动轨迹
        track_list = get_track(l)
        print('第一步,点击滑动按钮')
        ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
        time.sleep(1)
        print('第二步,拖动元素')
        for track in track_list:
             ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()  # 鼠标移动到距离当前位置(x,y)     time.sleep(0.002)
        # if l>100:
    
        ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform()
        time.sleep(1)
        print('第三步,释放鼠标')
        ActionChains(driver).release(on_element=element).perform()
        time.sleep(5)
    
    
    def main_check_slider(driver):
        """
        检查滑动按钮是否加载
        :param driver: 
        :return: 
        """
        while True:
            try :
                driver.get('http://www.cnbaowen.net/api/geetest/')
                element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob')))
                if element:
                    return element
            except TimeoutException as e:
                print('超时错误,继续')
                time.sleep(5)
    
    
    if __name__ == '__main__':
        try:
            count = 6  # 最多识别6次
            driver = webdriver.Chrome()
            # 等待滑动按钮加载完成
            element = main_check_slider(driver)
            while count > 0:
                main_check_code(driver,element)
                time.sleep(2)
                try:
                    success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success')
                    # 得到成功标志
                    print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success'))
                    success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element))
                    if success_images:
                        print('成功识别!!!!!!')
                        count = 0
                        break
                except NoSuchElementException as e:
                    print('识别错误,继续')
                    count -= 1
                    time.sleep(2)
            else:
                print('too many attempt check code ')
                exit('退出程序')
        finally:
            driver.close()

    成功识别标志css

    以上就是Python破解极验滑动验证码的详细内容,更多关于Python极验滑动验证码的资料请关注脚本之家其它相关文章!

    您可能感兴趣的文章:
    • Python爬取破解无线网络wifi密码过程解析
    • python 利用pywifi模块实现连接网络破解wifi密码实时监控网络
    • 如何用Python破解wifi密码过程详解
    • Python利用字典破解WIFI密码的方法
    • 手把手教你怎么用Python实现zip文件密码的破解
    • 教你利用Python破解ZIP或RAR文件密码
    • 用Python爬虫破解滑动验证码的案例解析
    • python 破解加密zip文件的密码
    • 使用 Python 破解压缩文件的密码的思路详解
    • 在前女友婚礼上,用Python破解了现场的WIFI还把名称改成了
    上一篇:详解python字符串驻留技术
    下一篇:Jupyter notebook 不自动弹出网页的解决方案
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python破解极验滑动验证码详细步骤 Python,破解,极验,滑动,验证,