• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    pytorch 实现计算 kl散度 F.kl_div()

    先附上官方文档说明:https://pytorch.org/docs/stable/nn.functional.html

    torch.nn.functional.kl_div(input, target, size_average=None, reduce=None, reduction='mean')

    Parameters

    input – Tensor of arbitrary shape

    target – Tensor of the same shape as input

    size_average (bool, optional) – Deprecated (see reduction). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field size_average is set to False, the losses are instead summed for each minibatch. Ignored when reduce is False. Default: True

    reduce (bool, optional) – Deprecated (see reduction). By default, the losses are averaged or summed over observations for each minibatch depending on size_average. When reduce is False, returns a loss per batch element instead and ignores size_average. Default: True

    reduction (string, optional) – Specifies the reduction to apply to the output: 'none' | 'batchmean' | 'sum' | 'mean'. 'none': no reduction will be applied 'batchmean': the sum of the output will be divided by the batchsize 'sum': the output will be summed 'mean': the output will be divided by the number of elements in the output Default: 'mean'

    然后看看怎么用:

    第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。这里很重要,不然求出来的kl散度可能是个负值。

    比如现在我有两个矩阵X, Y。因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。

    举个例子:

    如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。

    import torch
    import torch.nn.functional as F
    # 定义两个矩阵
    x = torch.randn((4, 5))
    y = torch.randn((4, 5))
    # 因为要用y指导x,所以求x的对数概率,y的概率
    logp_x = F.log_softmax(x, dim=-1)
    p_y = F.softmax(y, dim=-1)
     
     
    kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
    kl_mean = F.kl_div(logp_x, p_y, reduction='mean')
     
    print(kl_sum, kl_mean)
     
     
    >>> tensor(3.4165) tensor(0.1708)

    补充:pytorch中的kl散度,为什么kl散度是负数?

    F.kl_div()或者nn.KLDivLoss()是pytroch中计算kl散度的函数,它的用法有很多需要注意的细节。

    输入

    第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。并且因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。

    所以,一随机初始化一个tensor为例,对于第一个输入,我们需要先对这个tensor进行softmax(确保各维度和为1),然后再取log;对于第二个输入,我们需要对这个tensor进行softmax。

    import torch
    import torch.nn.functional as F
    
    a = torch.tensor([[0,0,1.1,2,0,10,0],[0,0,1,2,0,10,0]])
    log_a =F.log_softmax(a)
    
    b = torch.tensor([[0,0,1.1,2,0,7,0],[0,0,1,2,0,10,0]])
    softmax_b =F.softmax(b,dim=-1)
    
    kl_mean = F.kl_div(log_a, softmax_b, reduction='mean')
    print(kl_mean)
    

    为什么KL散度计算出来为负数

    先确保对第一个输入进行了softmax+log操作,对第二个参数进行了softmax操作。不进行softmax操作就可能为负。

    然后查看自己的输入是否是小数点后有很多位,当小数点后很多位的时候,pytorch下的softmax会产生各维度和不为1的现象,导致kl散度为负,如下所示:

    a = torch.tensor([[0.,0,0.000001,0.0000002,0,0.0000007,0]])
    log_a =F.log_softmax(a,dim=-1)
    print("log_a:",log_a)
    
    b = torch.tensor([[0.,0,0.000001,0.0000002,0,0.0000007,0]])
    softmax_b =F.softmax(b,dim=-1)
    print("softmax_b:",softmax_b)
    
    kl_mean = F.kl_div(log_a, softmax_b,reduction='mean')
    print("kl_mean:",kl_mean)
    

    输出如下,我们可以看到softmax_b的各维度和不为1:

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • Python 机器学习工具包SKlearn的安装与使用
    • python数据分析之用sklearn预测糖尿病
    • pandas读取excel,txt,csv,pkl文件等命令的操作
    • python爬取之json、pickle与shelve库的深入讲解
    • 基于KL散度、JS散度以及交叉熵的对比
    上一篇:python基础之编码规范总结
    下一篇:解决pytorch中的kl divergence计算问题
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    pytorch 实现计算 kl散度 F.kl_div() pytorch,实现,计算,散度,F.kl,