• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python机器学习之基于Pytorch实现猫狗分类

    一、环境配置

    安装Anaconda

    具体安装过程,请点击本文

    配置Pytorch

    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision

    二、数据集的准备

    1.数据集的下载

    kaggle网站的数据集下载地址:
    https://www.kaggle.com/lizhensheng/-2000

    2.数据集的分类

    将下载的数据集进行解压操作,然后进行分类
    分类如下(每个文件夹下包括cats和dogs文件夹)

     

    三、猫狗分类的实例

    导入相应的库

    # 导入库
    import torch.nn.functional as F
    import torch.optim as optim
    import torch
    import torch.nn as nn
    import torch.nn.parallel
     
    import torch.optim
    import torch.utils.data
    import torch.utils.data.distributed
    import torchvision.transforms as transforms
    import torchvision.datasets as datasets
    

    设置超参数

    # 设置超参数
    #每次的个数
    BATCH_SIZE = 20
    #迭代次数
    EPOCHS = 10
    #采用cpu还是gpu进行计算
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    图像处理与图像增强

    # 数据预处理
     
    transform = transforms.Compose([
        transforms.Resize(100),
        transforms.RandomVerticalFlip(),
        transforms.RandomCrop(50),
        transforms.RandomResizedCrop(150),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
    

    读取数据集和导入数据

    # 读取数据
     
    dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform)
     
    print(dataset_train.imgs)
     
    # 对应文件夹的label
     
    print(dataset_train.class_to_idx)
     
    dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform)
     
    # 对应文件夹的label
     
    print(dataset_test.class_to_idx)
     
    # 导入数据
     
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
     
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
    

    定义网络模型

    # 定义网络
    class ConvNet(nn.Module):
        def __init__(self):
            super(ConvNet, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, 3)
            self.max_pool1 = nn.MaxPool2d(2)
            self.conv2 = nn.Conv2d(32, 64, 3) 
            self.max_pool2 = nn.MaxPool2d(2) 
            self.conv3 = nn.Conv2d(64, 64, 3) 
            self.conv4 = nn.Conv2d(64, 64, 3) 
            self.max_pool3 = nn.MaxPool2d(2) 
            self.conv5 = nn.Conv2d(64, 128, 3) 
            self.conv6 = nn.Conv2d(128, 128, 3) 
            self.max_pool4 = nn.MaxPool2d(2) 
            self.fc1 = nn.Linear(4608, 512) 
            self.fc2 = nn.Linear(512, 1)
      
        def forward(self, x): 
            in_size = x.size(0) 
            x = self.conv1(x) 
            x = F.relu(x) 
            x = self.max_pool1(x) 
            x = self.conv2(x) 
            x = F.relu(x) 
            x = self.max_pool2(x) 
            x = self.conv3(x) 
            x = F.relu(x) 
            x = self.conv4(x) 
            x = F.relu(x) 
            x = self.max_pool3(x) 
            x = self.conv5(x) 
            x = F.relu(x) 
            x = self.conv6(x) 
            x = F.relu(x)
            x = self.max_pool4(x) 
            # 展开
            x = x.view(in_size, -1)
            x = self.fc1(x)
            x = F.relu(x) 
            x = self.fc2(x) 
            x = torch.sigmoid(x) 
            return x
     
    modellr = 1e-4
     
    # 实例化模型并且移动到GPU
     
    model = ConvNet().to(DEVICE)
     
    # 选择简单暴力的Adam优化器,学习率调低
     
    optimizer = optim.Adam(model.parameters(), lr=modellr)
    

    调整学习率

    def adjust_learning_rate(optimizer, epoch):
     
        """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
        modellrnew = modellr * (0.1 ** (epoch // 5)) 
        print("lr:",modellrnew) 
        for param_group in optimizer.param_groups: 
            param_group['lr'] = modellrnew
    

    定义训练过程

    # 定义训练过程
    def train(model, device, train_loader, optimizer, epoch):
     
        model.train() 
        for batch_idx, (data, target) in enumerate(train_loader):
     
            data, target = data.to(device), target.to(device).float().unsqueeze(1)
     
            optimizer.zero_grad()
     
            output = model(data)
     
            # print(output)
     
            loss = F.binary_cross_entropy(output, target)
     
            loss.backward()
     
            optimizer.step()
     
            if (batch_idx + 1) % 10 == 0:
     
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
     
                    epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
     
                        100. * (batch_idx + 1) / len(train_loader), loss.item()))
    # 定义测试过程
     
    def val(model, device, test_loader):
     
        model.eval()
     
        test_loss = 0
     
        correct = 0
     
        with torch.no_grad():
     
            for data, target in test_loader:
     
                data, target = data.to(device), target.to(device).float().unsqueeze(1)
     
                output = model(data)
                # print(output)
                test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
                pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
                correct += pred.eq(target.long()).sum().item()
     
            print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
                test_loss, correct, len(test_loader.dataset),
                100. * correct / len(test_loader.dataset)))
    

    定义保存模型和训练

    # 训练
    for epoch in range(1, EPOCHS + 1):
     
        adjust_learning_rate(optimizer, epoch)
        train(model, DEVICE, train_loader, optimizer, epoch) 
        val(model, DEVICE, test_loader)
     
    torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')
    

    训练结果

     

    四、实现分类预测测试

    准备预测的图片进行测试

    from __future__ import print_function, division
    from PIL import Image
     
    from torchvision import transforms
    import torch.nn.functional as F
     
    import torch
    import torch.nn as nn
    import torch.nn.parallel
    # 定义网络
    class ConvNet(nn.Module):
        def __init__(self):
            super(ConvNet, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, 3)
            self.max_pool1 = nn.MaxPool2d(2)
            self.conv2 = nn.Conv2d(32, 64, 3)
            self.max_pool2 = nn.MaxPool2d(2)
            self.conv3 = nn.Conv2d(64, 64, 3)
            self.conv4 = nn.Conv2d(64, 64, 3)
            self.max_pool3 = nn.MaxPool2d(2)
            self.conv5 = nn.Conv2d(64, 128, 3)
            self.conv6 = nn.Conv2d(128, 128, 3)
            self.max_pool4 = nn.MaxPool2d(2)
            self.fc1 = nn.Linear(4608, 512)
            self.fc2 = nn.Linear(512, 1)
     
        def forward(self, x):
            in_size = x.size(0)
            x = self.conv1(x)
            x = F.relu(x)
            x = self.max_pool1(x)
            x = self.conv2(x)
            x = F.relu(x)
            x = self.max_pool2(x)
            x = self.conv3(x)
            x = F.relu(x)
            x = self.conv4(x)
            x = F.relu(x)
            x = self.max_pool3(x)
            x = self.conv5(x)
            x = F.relu(x)
            x = self.conv6(x)
            x = F.relu(x)
            x = self.max_pool4(x)
            # 展开
            x = x.view(in_size, -1)
            x = self.fc1(x)
            x = F.relu(x)
            x = self.fc2(x)
            x = torch.sigmoid(x)
            return x
    # 模型存储路径
    model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth'
     
    # ------------------------ 加载数据 --------------------------- #
    # Data augmentation and normalization for training
    # Just normalization for validation
    # 定义预训练变换
    # 数据预处理
    transform_test = transforms.Compose([
        transforms.Resize(100),
        transforms.RandomVerticalFlip(),
        transforms.RandomCrop(50),
        transforms.RandomResizedCrop(150),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
     
     
    class_names = ['cat', 'dog']  # 这个顺序很重要,要和训练时候的类名顺序一致
     
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
     
    # ------------------------ 载入模型并且训练 --------------------------- #
    model = torch.load(model_save_path)
    model.eval()
    # print(model)
     
    image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg')
    #
    image_tensor = transform_test(image_PIL)
    # 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
    image_tensor.unsqueeze_(0)
    # 没有这句话会报错
    image_tensor = image_tensor.to(device)
     
    out = model(image_tensor)
    pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
    print(class_names[pred])
    

    预测结果


    实际训练的过程来看,整体看准确度不高。而经过测试发现,该模型只能对于猫进行识别,对于狗则会误判。

    五、参考资料

    实现猫狗分类

    到此这篇关于Python机器学习之基于Pytorch实现猫狗分类的文章就介绍到这了,更多相关Pytorch实现猫狗分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • pytorch 搭建神经网路的实现
    • 手把手教你实现PyTorch的MNIST数据集
    • pytorch模型的保存和加载、checkpoint操作
    • 总结近几年Pytorch基于Imgagenet数据集图像分类模型
    上一篇:Python中json.load()和json.loads()有哪些区别
    下一篇:python字符串的多行输出的实例详解
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python机器学习之基于Pytorch实现猫狗分类 Python,机器,学,习之,基于,