• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python OpenCV实现边缘检测

    本文实例为大家分享了Python OpenCV实现边缘检测的具体代码,供大家参考,具体内容如下

    1. Sobel 算子检测

    Sobel 算子是高斯平滑和微分运算的组合,抗噪能力很强,用途也很多,尤其是效率要求高但对细纹理不是很在意的时候。

    对于不连续的函数,有:

    假设要处理的图像为I,在两个方向求导。

    水平变化:用奇数大小的模板对图像I卷积,结果为Gx。例如,当模板大小为3时,Gx为: 

    垂直变化:用奇数大小的模板对图像I卷积,结果为Gy。例如,当模板大小为3时,Gy为:

    在图像的每个点,结合以上两个结果,得到: 

    极大值的位置是图像的边缘。

    当核大小为3时,上述Sobel核可能会产生更明显的误差。 为了解决这个问题,可以使用 Scharr 函数。这个函数只对大小为 3 的核有效,运算速度和 Sobel 函数一样快,但是结果更准确。 计算方法为:

    cv.Sobel(src, ddepth, dx, dy, dst, ksize, scale, delta, borderType)
    参数:
    src 传入的图像
    ddepth 图像的深度
    dx、dy 指求导的阶数,0表示这个方向上没有求导,取值为0、1。
    ksize Sobel算子的大小,即卷积核的大小,必须为奇数1、3、5、7,默认为3。-1代表3x3的Scharr算子。
    scale 缩放导数的比例常数,默认情况为没有伸缩系数。
    borderType 图像边界的模式,默认值为cv.BORDER_DEFAULT。

    需要对x和y两个方向都调用一次cv.Sobel()函数。然后,对每个方向调用cv.convertScaleAbs()函数将其转回uint8格式,再调用cv2.addWeighted()函数将两个方向组合起来。

    2. Laplacian 算子检测

    Laplacian 使用二阶导数来检测边缘。 因为图像是二维的,所以我们需要从两个方向求导:

    不连续函数的二阶导数是:

    使用的卷积核是:

    cv.Laplacian(src, ddepth, ksize)
    参数:
    src 需要处理的图像
    ddepth 图像的深度,-1表示采用的是原图像相同的深度,目标图像的深度必须大于等于原图像的深度
    ksize 算子的大小,即卷积核的大小,必须为1、3、5、7。

    然后,对返回值调用cv.convertScaleAbs(res)即可获得边缘图像。

    3.  Canny 边缘检测

    Canny 边缘检测算法由4个步骤组成。

    1)去噪。由于边缘检测容易受噪声影响,首先使用5*5高斯滤波器去除噪声。

    2)计算图像梯度。在平滑图像上使用 Sobel 算子计算水平和垂直方向的一阶导数(Gx 和 Gy)。 根据得到的两个梯度图(Gx和Gy)求出边界的梯度和方向,公式如下:

    如果一个像素是一个边缘,它的梯度方向总是垂直于边缘。 梯度方向分为四类:垂直方向、水平方向和两个对角线方向。

    3)非极大值抑制。得到梯度的方向和大小后,扫描整个图像去除那些非边界点。 检查每个像素点,看这个点的梯度是否在周围具有相同梯度方向的点中最大。

    A点位于图像的边缘。在其梯度变化的方向,选择像素B和C,检查A点的梯度是否为极大值。 如果是极大值,则保留,否则A点将被抑制,最后得到的结果是边缘细的二值图像。

    4)滞后阈值。现在来确定真正的边界。我们设置了两个阈值:minVal 和 maxVal。 当图像的灰度梯度高于 maxVal 时,认为是真正的边界,低于minVal 的边界将被丢弃。 如果介于两者之间,则取决于该点是否连接到确定为真的边界点。 如果是,则认为是边界点,如果不是,则将其丢弃。 minVal 较小的阈值将间断的边缘连接起来,maxVal 较大的阈值检测图像中明显的边缘。如下图: 

    A 高于阈值 maxVal,因此它是真正的边界点。虽然 C 低于 maxVal 但高于 minVal 并与 A 相连,所以它也被视为真正的边界点。 B 会被丢弃,因为它低于 maxVal ,并且没有连接到真正的边界点。 所以,选择合适的 maxVal 和 minVal 对于获得好的结果非常重要。

    cv.Canny(image, threshold1, threshold2)
    参数:
    image 灰度图
    threshold1 minval,较小的阈值
    threshold2 maxval,较大的阈值

    例:使用Sobel、Laplacian、Canny算法检测下面图像的边缘。

    import matplotlib
    import cv2 as cv
    import matplotlib.pyplot as plt
     
    font = {
        "family": "Microsoft YaHei"
    }
    matplotlib.rc("font", **font)
     
    img = cv.imread("./image/horse.jpg", 0)
     
    # Sobel
    x = cv.Sobel(img, cv.CV_16S, 1, 0)
    y = cv.Sobel(img, cv.CV_16S, 0, 1)
    absx = cv.convertScaleAbs(x)
    absy = cv.convertScaleAbs(y)
    res = cv.addWeighted(absx, 0.5, absy, 0.5, 0)
    plt.imshow(res, cmap=plt.cm.gray)
    plt.title("Sobel")
    plt.show()
     
    # Schaar
    x = cv.Sobel(img, cv.CV_16S, 1, 0, ksize=-1)
    y = cv.Sobel(img, cv.CV_16S, 0, 1, ksize=-1)
    absx = cv.convertScaleAbs(x)
    absy = cv.convertScaleAbs(y)
    res = cv.addWeighted(absx, 0.5, absy, 0.5, 0)
    plt.imshow(res, cmap=plt.cm.gray)
    plt.title("Schaar")
    plt.show()
     
    # Laplacian
    res = cv.Laplacian(img, cv.CV_16S)
    res = cv.convertScaleAbs(res)
    plt.imshow(res, cmap=plt.cm.gray)
    plt.title("Laplacian")
    plt.show()
     
    # Canny
    res = cv.Canny(img, 0, 100)
    plt.imshow(res, cmap=plt.cm.gray)
    plt.title("Canny")
    plt.show()

    输出:

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • OpenCV中Canny边缘检测的实现
    • Python实现Opencv cv2.Canny()边缘检测
    • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测
    • OpenCV实现灰度、高斯模糊、边缘检测的示例
    • Python使用Opencv实现边缘检测以及轮廓检测的实现
    • 如何利用Python 进行边缘检测
    • python实现canny边缘检测
    • OpenCV半小时掌握基本操作之边缘检测
    上一篇:Python OpenCV实现视频追踪
    下一篇:Python接口自动化浅析Token应用原理
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python OpenCV实现边缘检测 Python,OpenCV,实现,边缘,检测,