• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    算法系列15天速成——第十三天 树操作【下】

    听说赫夫曼胜过了他的导师,被认为”青出于蓝而胜于蓝“,这句话也是我比较欣赏的,嘻嘻。

    一  概念

        了解”赫夫曼树“之前,几个必须要知道的专业名词可要熟练记住啊。

        1: 结点的权

                “权”就相当于“重要度”,我们形象的用一个具体的数字来表示,然后通过数字的大小来决定谁重要,谁不重要。

        2: 路径

                 树中从“一个结点"到“另一个结点“之间的分支。

        3: 路径长度

                 一个路径上的分支数量。

        4: 树的路径长度

                 从树的根节点到每个节点的路径长度之和。

        5: 节点的带权路径路劲长度

                 其实也就是该节点到根结点的路径长度*该节点的权。

        6:   树的带权路径长度

                 树中各个叶节点的路径长度*该叶节点的权的和,常用WPL(Weight Path Length)表示。

    二: 构建赫夫曼树

            上面说了那么多,肯定是为下面做铺垫,这里说赫夫曼树,肯定是要说赫夫曼树咋好咋好,赫夫曼树是一种最优二叉树,

             因为他的WPL是最短的,何以见得?我们可以上图说话。

    现在我们做一个WPL的对比:

    图A: WPL= 5*2 + 7*2 +2*2+13*2=54

    图B:WPL=5*3+2*3+7*2+13*1=48

     

    我们对比一下,图B的WPL最短的,地球人已不能阻止WPL还能比“图B”的小,所以,“图B"就是一颗赫夫曼树,那么大家肯定

    要问,如何构建一颗赫夫曼树,还是上图说话。

     

    第一步: 我们将所有的节点都作为独根结点。

    第二步:   我们将最小的C和A组建为一个新的二叉树,权值为左右结点之和。

    第三步: 将上一步组建的新节点加入到剩下的节点中,排除上一步组建过的左右子树,我们选中B组建新的二叉树,然后取权值。

    第四步: 同上。

     

    三: 赫夫曼编码

          大家都知道,字符,汉字,数字在计算机中都是以0,1来表示的,相应的存储都是有一套编码方案来支撑的,比如ASC码。

     这样才能在"编码“和”解码“的过程中不会成为乱码,但是ASC码不理想的地方就是等长的,其实我们都想用较少的空间来存储

    更多的东西,那么我们就要采用”不等长”的编码方案来存储,那么“何为不等长呢“?其实也就是出现次数比较多的字符我们采用短编码,

    出现次数较少的字符我们采用长编码,恰好,“赫夫曼编码“就是不等长的编码。

        这里大家只要掌握赫夫曼树的编码规则:左子树为0,右子树为1,对应的编码后的规则是:从根节点到子节点

    A: 111

    B: 10

    C: 110

    D: 0

     

    四: 实现

          不知道大家懂了没有,不懂的话多看几篇,下面说下赫夫曼的具体实现。

             第一步:构建赫夫曼树。

             第二步:对赫夫曼树进行编码。

             第三步:压缩操作。

             第四步:解压操作。

     

    1:首先看下赫夫曼树的结构,这里字段的含义就不解释了。

    复制代码 代码如下:

    #region 赫夫曼树结构
        /// summary>
    /// 赫夫曼树结构
    /// /summary>
        public class HuffmanTree
        {
            public int weight { get; set; }

            public int parent { get; set; }

            public int left { get; set; }

            public int right { get; set; }
        }
        #endregion

    2: 创建赫夫曼树,原理在上面已经解释过了,就是一步一步的向上搭建,这里要注意的二个性质定理:

             当叶子节点为N个,则需要N-1步就能搭建赫夫曼树。

             当叶子节点为N个,则赫夫曼树的节点总数为:(2*N)-1个。

    复制代码 代码如下:

    #region 赫夫曼树的创建
            /// summary>
    /// 赫夫曼树的创建
    /// /summary>
    /// param name="huffman">赫夫曼树/param>
    /// param name="leafNum">叶子节点/param>
    /// param name="weight">节点权重/param>
            public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
            {
                //赫夫曼树的节点总数
                int huffmanNode = 2 * leafNum - 1;

                //初始化节点,赋予叶子节点值
                for (int i = 0; i huffmanNode; i++)
                {
                    if (i leafNum)
                    {
                        huffman[i].weight = weight[i];
                    }
                }

                //这里面也要注意,4个节点,其实只要3步就可以构造赫夫曼树
                for (int i = leafNum; i huffmanNode; i++)
                {
                    int minIndex1;
                    int minIndex2;
                    SelectNode(huffman, i, out minIndex1, out minIndex2);

                    //最后得出minIndex1和minindex2中实体的weight最小
                    huffman[minIndex1].parent = i;
                    huffman[minIndex2].parent = i;

                    huffman[i].left = minIndex1;
                    huffman[i].right = minIndex2;

                    huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
                }

                return huffman;
            }
            #endregion

            #region 选出叶子节点中最小的二个节点
            /// summary>
    /// 选出叶子节点中最小的二个节点
    /// /summary>
    /// param name="huffman">/param>
    /// param name="searchNodes">要查找的结点数/param>
    /// param name="minIndex1">/param>
    /// param name="minIndex2">/param>
            public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
            {
                HuffmanTree minNode1 = null;

                HuffmanTree minNode2 = null;

                //最小节点在赫夫曼树中的下标
                minIndex1 = minIndex2 = 0;

                //查找范围
                for (int i = 0; i searchNodes; i++)
                {
                    ///只有独根树才能进入查找范围
                    if (huffman[i].parent == 0)
                    {
                        //如果为null,则认为当前实体为最小
                        if (minNode1 == null)
                        {
                            minIndex1 = i;

                            minNode1 = huffman[i];

                            continue;
                        }

                        //如果为null,则认为当前实体为最小
                        if (minNode2 == null)
                        {
                            minIndex2 = i;

                            minNode2 = huffman[i];

                            //交换一个位置,保证minIndex1为最小,为后面判断做准备
                            if (minNode1.weight > minNode2.weight)
                            {
                                //节点交换
                                var temp = minNode1;
                                minNode1 = minNode2;
                                minNode2 = temp;

                                //下标交换
                                var tempIndex = minIndex1;
                                minIndex1 = minIndex2;
                                minIndex2 = tempIndex;

                                continue;
                            }
                        }
                        if (minNode1 != null minNode2 != null)
                        {
                            if (huffman[i].weight = minNode1.weight)
                            {
                                //将min1临时转存给min2
                                minNode2 = minNode1;
                                minNode1 = huffman[i];

                                //记录在数组中的下标
                                minIndex2 = minIndex1;
                                minIndex1 = i;
                            }
                            else
                            {
                                if (huffman[i].weight minNode2.weight)
                                {
                                    minNode2 = huffman[i];

                                    minIndex2 = i;
                                }
                            }
                        }
                    }
                }
            }
            #endregion

    3:对哈夫曼树进行编码操作,形成一套“模板”,效果跟ASC模板一样,不过一个是不等长,一个是等长。

    复制代码 代码如下:

    #region 赫夫曼编码
            /// summary>
    /// 赫夫曼编码
    /// /summary>
    /// param name="huffman">/param>
    /// param name="leafNum">/param>
    /// param name="huffmanCode">/param>
            public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
            {
                int current = 0;

                int parent = 0;

                string[] huffmanCode = new string[leafNum];

                //四个叶子节点的循环
                for (int i = 0; i leafNum; i++)
                {
                    //单个字符的编码串
                    string codeTemp = string.Empty;

                    current = i;

                    //第一次获取最左节点
                    parent = huffman[current].parent;

                    while (parent != 0)
                    {
                        //如果父节点的左子树等于当前节点就标记为0
                        if (current == huffman[parent].left)
                            codeTemp += "0";
                        else
                            codeTemp += "1";

                        current = parent;
                        parent = huffman[parent].parent;
                    }

                    huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
                }
                return huffmanCode;
            }
            #endregion

    4:模板生成好了,我们就要对指定的测试数据进行压缩处理

    复制代码 代码如下:

    #region 对指定字符进行压缩
            /// summary>
    /// 对指定字符进行压缩
    /// /summary>
    /// param name="huffmanCode">/param>
    /// param name="alphabet">/param>
    /// param name="test">/param>
            public string Encode(string[] huffmanCode, string[] alphabet, string test)
            {
                //返回的0,1代码
                string encodeStr = string.Empty;

                //对每个字符进行编码
                for (int i = 0; i test.Length; i++)
                {
                    //在模版里面查找
                    for (int j = 0; j alphabet.Length; j++)
                    {
                        if (test[i].ToString() == alphabet[j])
                        {
                            encodeStr += huffmanCode[j];
                        }
                    }
                }

                return encodeStr;
            }
            #endregion

    5: 最后也就是对压缩的数据进行还原操作。

    复制代码 代码如下:

    #region 对指定的二进制进行解压
            /// summary>
    /// 对指定的二进制进行解压
    /// /summary>
    /// param name="huffman">/param>
    /// param name="leafNum">/param>
    /// param name="alphabet">/param>
    /// param name="test">/param>
    /// returns>/returns>
            public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
            {
                string decodeStr = string.Empty;

                //所有要解码的字符
                for (int i = 0; i test.Length; )
                {
                    int j = 0;
                    //赫夫曼树结构模板(用于循环的解码单个字符)
                    for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
                    {
                        if (test[i].ToString() == "0")
                        {
                            j = huffman[j].left;
                        }
                        if (test[i].ToString() == "1")
                        {
                            j = huffman[j].right;
                        }
                        i++;
                    }
                    decodeStr += alphabet[j];
                }
                return decodeStr;
            }

            #endregion

    最后上一下总的运行代码

    复制代码 代码如下:

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;

    namespace HuffmanTree
    {
        class Program
        {
            static void Main(string[] args)
            {
                //有四个叶节点
                int leafNum = 4;

                //赫夫曼树中的节点总数
                int huffmanNodes = 2 * leafNum - 1;

                //各节点的权值
                int[] weight = { 5, 7, 2, 13 };

                string[] alphabet = { "A", "B", "C", "D" };

                string testCode = "DBDBDABDCDADBDADBDADACDBDBD";

                //赫夫曼树用数组来保存,每个赫夫曼都作为一个实体存在
                HuffmanTree[] huffman = new HuffmanTree[huffmanNodes].Select(i => new HuffmanTree() { }).ToArray();

                HuffmanTreeManager manager = new HuffmanTreeManager();

                manager.CreateTree(huffman, leafNum, weight);

                string[] huffmanCode = manager.HuffmanCoding(huffman, leafNum);

                for (int i = 0; i leafNum; i++)
                {
                    Console.WriteLine("字符:{0},权重:{1},编码为:{2}", alphabet[i], huffman[i].weight, huffmanCode[i]);
                }

                Console.WriteLine("原始的字符串为:" + testCode);

                string encode = manager.Encode(huffmanCode, alphabet, testCode);

                Console.WriteLine("被编码的字符串为:" + encode);

                string decode = manager.Decode(huffman, huffmanNodes, alphabet, encode);

                Console.WriteLine("解码后的字符串为:" + decode);
            }
        }

        #region 赫夫曼树结构
        /// summary>
    /// 赫夫曼树结构
    /// /summary>
        public class HuffmanTree
        {
            public int weight { get; set; }

            public int parent { get; set; }

            public int left { get; set; }

            public int right { get; set; }
        }
        #endregion

        /// summary>
    /// 赫夫曼树的操作类
    /// /summary>
        public class HuffmanTreeManager
        {
            #region 赫夫曼树的创建
            /// summary>
    /// 赫夫曼树的创建
    /// /summary>
    /// param name="huffman">赫夫曼树/param>
    /// param name="leafNum">叶子节点/param>
    /// param name="weight">节点权重/param>
            public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
            {
                //赫夫曼树的节点总数
                int huffmanNode = 2 * leafNum - 1;

                //初始化节点,赋予叶子节点值
                for (int i = 0; i huffmanNode; i++)
                {
                    if (i leafNum)
                    {
                        huffman[i].weight = weight[i];
                    }
                }

                //这里面也要注意,4个节点,其实只要3步就可以构造赫夫曼树
                for (int i = leafNum; i huffmanNode; i++)
                {
                    int minIndex1;
                    int minIndex2;
                    SelectNode(huffman, i, out minIndex1, out minIndex2);

                    //最后得出minIndex1和minindex2中实体的weight最小
                    huffman[minIndex1].parent = i;
                    huffman[minIndex2].parent = i;

                    huffman[i].left = minIndex1;
                    huffman[i].right = minIndex2;

                    huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
                }

                return huffman;
            }
            #endregion

            #region 选出叶子节点中最小的二个节点
            /// summary>
    /// 选出叶子节点中最小的二个节点
    /// /summary>
    /// param name="huffman">/param>
    /// param name="searchNodes">要查找的结点数/param>
    /// param name="minIndex1">/param>
    /// param name="minIndex2">/param>
            public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
            {
                HuffmanTree minNode1 = null;

                HuffmanTree minNode2 = null;

                //最小节点在赫夫曼树中的下标
                minIndex1 = minIndex2 = 0;

                //查找范围
                for (int i = 0; i searchNodes; i++)
                {
                    ///只有独根树才能进入查找范围
                    if (huffman[i].parent == 0)
                    {
                        //如果为null,则认为当前实体为最小
                        if (minNode1 == null)
                        {
                            minIndex1 = i;

                            minNode1 = huffman[i];

                            continue;
                        }

                        //如果为null,则认为当前实体为最小
                        if (minNode2 == null)
                        {
                            minIndex2 = i;

                            minNode2 = huffman[i];

                            //交换一个位置,保证minIndex1为最小,为后面判断做准备
                            if (minNode1.weight > minNode2.weight)
                            {
                                //节点交换
                                var temp = minNode1;
                                minNode1 = minNode2;
                                minNode2 = temp;

                                //下标交换
                                var tempIndex = minIndex1;
                                minIndex1 = minIndex2;
                                minIndex2 = tempIndex;

                                continue;
                            }
                        }
                        if (minNode1 != null minNode2 != null)
                        {
                            if (huffman[i].weight = minNode1.weight)
                            {
                                //将min1临时转存给min2
                                minNode2 = minNode1;
                                minNode1 = huffman[i];

                                //记录在数组中的下标
                                minIndex2 = minIndex1;
                                minIndex1 = i;
                            }
                            else
                            {
                                if (huffman[i].weight minNode2.weight)
                                {
                                    minNode2 = huffman[i];

                                    minIndex2 = i;
                                }
                            }
                        }
                    }
                }
            }
            #endregion

            #region 赫夫曼编码
            /// summary>
    /// 赫夫曼编码
    /// /summary>
    /// param name="huffman">/param>
    /// param name="leafNum">/param>
    /// param name="huffmanCode">/param>
            public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
            {
                int current = 0;

                int parent = 0;

                string[] huffmanCode = new string[leafNum];

                //四个叶子节点的循环
                for (int i = 0; i leafNum; i++)
                {
                    //单个字符的编码串
                    string codeTemp = string.Empty;

                    current = i;

                    //第一次获取最左节点
                    parent = huffman[current].parent;

                    while (parent != 0)
                    {
                        //如果父节点的左子树等于当前节点就标记为0
                        if (current == huffman[parent].left)
                            codeTemp += "0";
                        else
                            codeTemp += "1";

                        current = parent;
                        parent = huffman[parent].parent;
                    }

                    huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
                }
                return huffmanCode;
            }
            #endregion

            #region 对指定字符进行压缩
            /// summary>
    /// 对指定字符进行压缩
    /// /summary>
    /// param name="huffmanCode">/param>
    /// param name="alphabet">/param>
    /// param name="test">/param>
            public string Encode(string[] huffmanCode, string[] alphabet, string test)
            {
                //返回的0,1代码
                string encodeStr = string.Empty;

                //对每个字符进行编码
                for (int i = 0; i test.Length; i++)
                {
                    //在模版里面查找
                    for (int j = 0; j alphabet.Length; j++)
                    {
                        if (test[i].ToString() == alphabet[j])
                        {
                            encodeStr += huffmanCode[j];
                        }
                    }
                }

                return encodeStr;
            }
            #endregion

            #region 对指定的二进制进行解压
            /// summary>
    /// 对指定的二进制进行解压
    /// /summary>
    /// param name="huffman">/param>
    /// param name="leafNum">/param>
    /// param name="alphabet">/param>
    /// param name="test">/param>
    /// returns>/returns>
            public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
            {
                string decodeStr = string.Empty;

                //所有要解码的字符
                for (int i = 0; i test.Length; )
                {
                    int j = 0;
                    //赫夫曼树结构模板(用于循环的解码单个字符)
                    for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
                    {
                        if (test[i].ToString() == "0")
                        {
                            j = huffman[j].left;
                        }
                        if (test[i].ToString() == "1")
                        {
                            j = huffman[j].right;
                        }
                        i++;
                    }
                    decodeStr += alphabet[j];
                }
                return decodeStr;
            }

            #endregion
        }
    }

    您可能感兴趣的文章:
    • 算法系列15天速成 第十四天 图【上】
    • 算法系列15天速成 第十二天 树操作【中】
    • 算法系列15天速成 第十一天 树操作(上)
    • 算法系列15天速成 第十天 栈
    • 算法系列15天速成 第八天 线性表【下】
    • 算法系列15天速成 第九天 队列
    • 算法系列15天速成 第七天 线性表【上】
    • 算法系列15天速成 第六天 五大经典查找【下】
    • 算法系列15天速成 第五天 五大经典查找【中】
    • 算法系列15天速成 第四天 五大经典查找【上】
    • 算法系列15天速成 第三天 七大经典排序【下】
    • 算法系列15天速成 第二天 七大经典排序【中】
    • 算法系列15天速成 第一天 七大经典排序【上】
    • 算法系列15天速成——第十五天 图【下】(大结局)
    上一篇:算法系列15天速成 第十二天 树操作【中】
    下一篇:算法系列15天速成 第十四天 图【上】
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    算法系列15天速成——第十三天 树操作【下】 算法,系列,15天,速成,第十,