到目前为止,最有效的利用人工智能,使用NLP技术与客户进行交谈的就是联络中心。我们看到了劳动力利用率的主要变化,根据用例,联络中心的劳动力需求下降了10%到70%。由于机器人的速度比人快,因此客户的努力往往会减少。
通常,这些实现采用无缝的、非侵入性的方式,就可以实现上述所有技术。我所说的非侵入性指的是机器人,网络聊天机器人,或语音助手成为你的网络聊天,语音电话和信息基础设施的用户。为了实现这两个接口,什么都不需要中断。
通过将机器人作为用户在这些系统上集成,你提供了一种无缝的方法,以便在必要时将交互传递给人类座席。机器人知道它不知道什么,机器人能比人类更快地察觉到负面情绪。在这些条件和其他条件下,机器人可以将客户交互转移到一个人的解决方案中。
一个认知处理平台可以同时使用网络聊天和语音接口,以及新的语音计算接口,比如亚马逊Alexa、苹果iHome和谷歌Home。一般来说,这些接口是从认知处理器中抽象出来的,但有些接口被他们所使用的媒体所限制。例如,你不能将图形文件发送到语音接口。但是,你可以在一些调用VisualIVR中协调使用不同的媒体。Nuance在美国航空公司的实施就是一个很好的例子。在这个用例中,交互可以从语音开始,但是平台可以将URL推送到移动设备或电子邮件接口来支持座位选择。在美国的实现中,URL提供了用于座位选择的座位图。
Web聊天集成通常基于Web服务集成。唯一的诀窍就是让传递函数发挥作用。大多数较大的播放器都已经预先构建了它们的APIs;但是,如果你使用的是一个不太知名的NLP解决方案的Web聊天软件,那么你可能将需要编写一些代码。
语音接口比网络聊天要复杂一些。你应该能够重用你的IVR作为ASR/TTS,但是这样做通常需要一些重新设计和重新配置--一直回到PSTN。高质量的音质网会得到高质量的效果。如果你使用的是高压缩编码,那么你就需要一个低性能的语音识别解决方案。在IVR重用的情况下,ASR/TTS处理器位于传统IVR的后面。通过这种方式,你可以一次迁移一个新的语音NLP自动化过程,并且风险最小。
Alexa类型的实现可以提供相同的语音计算接口;然而,他们在架构上不同。在这些情况下,设备本身,而不是IVR,可以托管ASR/TTS。此外,要将交互传递到传统语音系统,需要使用兼容的编解码器。这些新设备支持开放标准的Opus编码器,它也可用于一些语音系统,WebRTC和许多会话边界控制器(SBCs)。
顺便说一下,Alexa的使用并不仅限于亚马逊的设备。亚马逊去年为Windows10推出了Alexa,任何可以运行亚马逊应用程序的地方都可以运行Alexa。而且,你不必总是说Alexa。你可以调整界面以显示你公司的名字。例如,你可以在你按下Alexa按钮和/或在你的设备上注册技能之后说:启动ABC公司的产品订购。
你可以一起使用全渠道和会话人工智能,但是设计对话流是非常重要的。你必须特别注意机器人将遇到的故障情况。Visual IVR还创建了一些失败案例的挑战,你需要在部署之前做好计划。
所有主要的联络中心客户关系管理和电话供应商都提供或有一个计划,以使基于AI的解决方案提供给他们的联络中心客户。此外,目前市场上有1000多个RPA、会话AI和NLP分析平台。
在许多方面,联络中心的运营商从来没有这么好过。基于AI的自动化工具正在减少劳动力需求和客户的努力。工具就在那里。如果你制定一个好的计划并执行,你将在许多层面上取得成功,并发现你的企业和客户的一些事情,从而获得更大的成功。