• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Redis中的数据过期策略详解

    1、Redis中key的的过期时间

    通过EXPIRE key seconds命令来设置数据的过期时间。返回1表明设置成功,返回0表明key不存在或者不能成功设置过期时间。在key上设置了过期时间后key将在指定的秒数后被自动删除。被指定了过期时间的key在Redis中被称为是不稳定的。

    当key被DEL命令删除或者被SET、GETSET命令重置后与之关联的过期时间会被清除

    127.0.0.1:6379> setex s 20 1
    OK
    127.0.0.1:6379> ttl s
    (integer) 17
    127.0.0.1:6379> setex s 200 1
    OK
    127.0.0.1:6379> ttl s
    (integer) 195
    127.0.0.1:6379> setrange s 3 100
    (integer) 6
    127.0.0.1:6379> ttl s
    (integer) 152
    127.0.0.1:6379> get s
    "1\x00\x00100"
    127.0.0.1:6379> ttl s
    (integer) 108
    127.0.0.1:6379> getset s 200
    "1\x00\x00100"
    127.0.0.1:6379> get s
    "200"
    127.0.0.1:6379> ttl s
    (integer) -1

    使用PERSIST可以清除过期时间

    127.0.0.1:6379> setex s 100 test
    OK
    127.0.0.1:6379> get s
    "test"
    127.0.0.1:6379> ttl s
    (integer) 94
    127.0.0.1:6379> type s
    string
    127.0.0.1:6379> strlen s
    (integer) 4
    127.0.0.1:6379> persist s
    (integer) 1
    127.0.0.1:6379> ttl s
    (integer) -1
    127.0.0.1:6379> get s
    "test"

    使用rename只是改了key值

    127.0.0.1:6379> expire s 200
    (integer) 1
    127.0.0.1:6379> ttl s
    (integer) 198
    127.0.0.1:6379> rename s ss
    OK
    127.0.0.1:6379> ttl ss
    (integer) 187
    127.0.0.1:6379> type ss
    string
    127.0.0.1:6379> get ss
    "test"

    说明:Redis2.6以后expire精度可以控制在0到1毫秒内,key的过期信息以绝对Unix时间戳的形式存储(Redis2.6之后以毫秒级别的精度存储),所以在多服务器同步的时候,一定要同步各个服务器的时间

    2、Redis过期键删除策略

    Redis key过期的方式有三种:

    1. 被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
    2. 主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期主动淘汰一批已过期的key
    3. 当前已用内存超过maxmemory限定时,触发主动清理策略

    被动删除

    只有key被操作时(如GET),REDIS才会被动检查该key是否过期,如果过期则删除之并且返回NIL。

    1、这种删除策略对CPU是友好的,删除操作只有在不得不的情况下才会进行,不会其他的expire key上浪费无谓的CPU时间。

    2、但是这种策略对内存不友好,一个key已经过期,但是在它被操作之前不会被删除,仍然占据内存空间。如果有大量的过期键存在但是又很少被访问到,那会造成大量的内存空间浪费。expireIfNeeded(redisDb *db, robj *key)函数位于src/db.c。

    /*-----------------------------------------------------------------------------
     * Expires API
     *----------------------------------------------------------------------------*/
     
    int removeExpire(redisDb *db, robj *key) {
     /* An expire may only be removed if there is a corresponding entry in the
     * main dict. Otherwise, the key will never be freed. */
     redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
     return dictDelete(db->expires,key->ptr) == DICT_OK;
    }
     
    void setExpire(redisDb *db, robj *key, long long when) {
     dictEntry *kde, *de;
     
     /* Reuse the sds from the main dict in the expire dict */
     kde = dictFind(db->dict,key->ptr);
     redisAssertWithInfo(NULL,key,kde != NULL);
     de = dictReplaceRaw(db->expires,dictGetKey(kde));
     dictSetSignedIntegerVal(de,when);
    }
     
    /* Return the expire time of the specified key, or -1 if no expire
     * is associated with this key (i.e. the key is non volatile) */
    long long getExpire(redisDb *db, robj *key) {
     dictEntry *de;
     
     /* No expire? return ASAP */
     if (dictSize(db->expires) == 0 ||
     (de = dictFind(db->expires,key->ptr)) == NULL) return -1;
     
     /* The entry was found in the expire dict, this means it should also
     * be present in the main dict (safety check). */
     redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
     return dictGetSignedIntegerVal(de);
    }
     
    /* Propagate expires into slaves and the AOF file.
     * When a key expires in the master, a DEL operation for this key is sent
     * to all the slaves and the AOF file if enabled.
     *
     * This way the key expiry is centralized in one place, and since both
     * AOF and the master->slave link guarantee operation ordering, everything
     * will be consistent even if we allow write operations against expiring
     * keys. */
    void propagateExpire(redisDb *db, robj *key) {
     robj *argv[2];
     
     argv[0] = shared.del;
     argv[1] = key;
     incrRefCount(argv[0]);
     incrRefCount(argv[1]);
     
     if (server.aof_state != REDIS_AOF_OFF)
     feedAppendOnlyFile(server.delCommand,db->id,argv,2);
     replicationFeedSlaves(server.slaves,db->id,argv,2);
     
     decrRefCount(argv[0]);
     decrRefCount(argv[1]);
    }
     
    int expireIfNeeded(redisDb *db, robj *key) {
     mstime_t when = getExpire(db,key);
     mstime_t now;
     
     if (when  0) return 0; /* No expire for this key */ /* Don't expire anything while loading. It will be done later. */ if (server.loading) return 0; /* If we are in the context of a Lua script, we claim that time is * blocked to when the Lua script started. This way a key can expire * only the first time it is accessed and not in the middle of the * script execution, making propagation to slaves / AOF consistent. * See issue #1525 on Github for more information. */ now = server.lua_caller ? server.lua_time_start : mstime(); /* If we are running in the context of a slave, return ASAP: * the slave key expiration is controlled by the master that will * send us synthesized DEL operations for expired keys. * * Still we try to return the right information to the caller, * that is, 0 if we think the key should be still valid, 1 if * we think the key is expired at this time. */ if (server.masterhost != NULL) return now > when;
     
     /* Return when this key has not expired */
     if (now = when) return 0; /* Delete the key */ server.stat_expiredkeys++; propagateExpire(db,key); notifyKeyspaceEvent(REDIS_NOTIFY_EXPIRED, "expired",key,db->id);
     return dbDelete(db,key);
    }
     
    /*-----------------------------------------------------------------------------
     * Expires Commands
     *----------------------------------------------------------------------------*/
     
    /* This is the generic command implementation for EXPIRE, PEXPIRE, EXPIREAT
     * and PEXPIREAT. Because the commad second argument may be relative or absolute
     * the "basetime" argument is used to signal what the base time is (either 0
     * for *AT variants of the command, or the current time for relative expires).
     *
     * unit is either UNIT_SECONDS or UNIT_MILLISECONDS, and is only used for
     * the argv[2] parameter. The basetime is always specified in milliseconds. */
    void expireGenericCommand(redisClient *c, long long basetime, int unit) {
     robj *key = c->argv[1], *param = c->argv[2];
     long long when; /* unix time in milliseconds when the key will expire. */
     
     if (getLongLongFromObjectOrReply(c, param, when, NULL) != REDIS_OK)
     return;
     
     if (unit == UNIT_SECONDS) when *= 1000;
     when += basetime;
     
     /* No key, return zero. */
     if (lookupKeyRead(c->db,key) == NULL) {
     addReply(c,shared.czero);
     return;
     }
     
     /* EXPIRE with negative TTL, or EXPIREAT with a timestamp into the past
     * should never be executed as a DEL when load the AOF or in the context
     * of a slave instance.
     *
     * Instead we take the other branch of the IF statement setting an expire
     * (possibly in the past) and wait for an explicit DEL from the master. */
     if (when = mstime()  !server.loading  !server.masterhost) { robj *aux; redisAssertWithInfo(c,key,dbDelete(c->db,key));
     server.dirty++;
     
     /* Replicate/AOF this as an explicit DEL. */
     aux = createStringObject("DEL",3);
     rewriteClientCommandVector(c,2,aux,key);
     decrRefCount(aux);
     signalModifiedKey(c->db,key);
     notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id);
     addReply(c, shared.cone);
     return;
     } else {
     setExpire(c->db,key,when);
     addReply(c,shared.cone);
     signalModifiedKey(c->db,key);
     notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"expire",key,c->db->id);
     server.dirty++;
     return;
     }
    }
     
    void expireCommand(redisClient *c) {
     expireGenericCommand(c,mstime(),UNIT_SECONDS);
    }
     
    void expireatCommand(redisClient *c) {
     expireGenericCommand(c,0,UNIT_SECONDS);
    }
     
    void pexpireCommand(redisClient *c) {
     expireGenericCommand(c,mstime(),UNIT_MILLISECONDS);
    }
     
    void pexpireatCommand(redisClient *c) {
     expireGenericCommand(c,0,UNIT_MILLISECONDS);
    }
     
    void ttlGenericCommand(redisClient *c, int output_ms) {
     long long expire, ttl = -1;
     
     /* If the key does not exist at all, return -2 */
     if (lookupKeyRead(c->db,c->argv[1]) == NULL) {
     addReplyLongLong(c,-2);
     return;
     }
     /* The key exists. Return -1 if it has no expire, or the actual
     * TTL value otherwise. */
     expire = getExpire(c->db,c->argv[1]);
     if (expire != -1) {
     ttl = expire-mstime();
     if (ttl  0) ttl = 0; } if (ttl == -1) { addReplyLongLong(c,-1); } else { addReplyLongLong(c,output_ms ? ttl : ((ttl+500)/1000)); } } void ttlCommand(redisClient *c) { ttlGenericCommand(c, 0); } void pttlCommand(redisClient *c) { ttlGenericCommand(c, 1); } void persistCommand(redisClient *c) { dictEntry *de; de = dictFind(c->db->dict,c->argv[1]->ptr);
     if (de == NULL) {
     addReply(c,shared.czero);
     } else {
     if (removeExpire(c->db,c->argv[1])) {
      addReply(c,shared.cone);
      server.dirty++;
     } else {
      addReply(c,shared.czero);
     }
     }
    }

    但仅是这样是不够的,因为可能存在一些key永远不会被再次访问到,这些设置了过期时间的key也是需要在过期后被删除的,我们甚至可以将这种情况看作是一种内存泄露----无用的垃圾数据占用了大量的内存,而服务器却不会自己去释放它们,这对于运行状态非常依赖于内存的Redis服务器来说,肯定不是一个好消息

    主动删除

    先说一下时间事件,对于持续运行的服务器来说, 服务器需要定期对自身的资源和状态进行必要的检查和整理, 从而让服务器维持在一个健康稳定的状态, 这类操作被统称为常规操作(cron job)

    在 Redis 中, 常规操作由 redis.c/serverCron 实现, 它主要执行以下操作

    Redis 将 serverCron 作为时间事件来运行, 从而确保它每隔一段时间就会自动运行一次, 又因为 serverCron 需要在 Redis 服务器运行期间一直定期运行, 所以它是一个循环时间事件: serverCron 会一直定期执行,直到服务器关闭为止。

    在 Redis 2.6 版本中, 程序规定 serverCron 每秒运行 10 次, 平均每 100 毫秒运行一次。 从 Redis 2.8 开始, 用户可以通过修改 hz选项来调整 serverCron 的每秒执行次数, 具体信息请参考 redis.conf 文件中关于 hz 选项的说明

    也叫定时删除,这里的“定期”指的是Redis定期触发的清理策略,由位于src/redis.c的activeExpireCycle(void)函数来完成。

    serverCron是由redis的事件框架驱动的定位任务,这个定时任务中会调用activeExpireCycle函数,针对每个db在限制的时间REDIS_EXPIRELOOKUPS_TIME_LIMIT内迟可能多的删除过期key,之所以要限制时间是为了防止过长时间 的阻塞影响redis的正常运行。这种主动删除策略弥补了被动删除策略在内存上的不友好。

    因此,Redis会周期性的随机测试一批设置了过期时间的key并进行处理。测试到的已过期的key将被删除。

    典型的方式为,Redis每秒做10次如下的步骤:

    这是一个基于概率的简单算法,基本的假设是抽出的样本能够代表整个key空间,redis持续清理过期的数据直至将要过期的key的百分比降到了25%以下。这也意味着在任何给定的时刻已经过期但仍占据着内存空间的key的量最多为每秒的写操作量除以4.

    Redis-3.0.0中的默认值是10,代表每秒钟调用10次后台任务。

    除了主动淘汰的频率外,Redis对每次淘汰任务执行的最大时长也有一个限定,这样保证了每次主动淘汰不会过多阻塞应用请求,以下是这个限定计算公式:

    #define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* CPU max % for keys collection */ 
    ... 
    timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;

    hz调大将会提高Redis主动淘汰的频率,如果你的Redis存储中包含很多冷数据占用内存过大的话,可以考虑将这个值调大,但Redis作者建议这个值不要超过100。我们实际线上将这个值调大到100,观察到CPU会增加2%左右,但对冷数据的内存释放速度确实有明显的提高(通过观察keyspace个数和used_memory大小)。

    可以看出timelimit和server.hz是一个倒数的关系,也就是说hz配置越大,timelimit就越小。换句话说是每秒钟期望的主动淘汰频率越高,则每次淘汰最长占用时间就越短。这里每秒钟的最长淘汰占用时间是固定的250ms(1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/100),而淘汰频率和每次淘汰的最长时间是通过hz参数控制的。

    从以上的分析看,当redis中的过期key比率没有超过25%之前,提高hz可以明显提高扫描key的最小个数。假设hz为10,则一秒内最少扫描200个key(一秒调用10次*每次最少随机取出20个key),如果hz改为100,则一秒内最少扫描2000个key;另一方面,如果过期key比率超过25%,则扫描key的个数无上限,但是cpu时间每秒钟最多占用250ms。

    当REDIS运行在主从模式时,只有主结点才会执行上述这两种过期删除策略,然后把删除操作”del key”同步到从结点。

    maxmemory

    当前已用内存超过maxmemory限定时,触发主动清理策略

    当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。

    清理时会根据用户配置的maxmemory-policy来做适当的清理(一般是LRU或TTL),这里的LRU或TTL策略并不是针对redis的所有key,而是以配置文件中的maxmemory-samples个key作为样本池进行抽样清理。

    maxmemory-samples在redis-3.0.0中的默认配置为5,如果增加,会提高LRU或TTL的精准度,redis作者测试的结果是当这个配置为10时已经非常接近全量LRU的精准度了,并且增加maxmemory-samples会导致在主动清理时消耗更多的CPU时间,建议:

    以下是上文中提到的配置参数的说明

    # Redis calls an internal function to perform many background tasks, like 
    # closing connections of clients in timeout, purging expired keys that are 
    # never requested, and so forth. 
    # 
    # Not all tasks are performed with the same frequency, but Redis checks for 
    # tasks to perform according to the specified "hz" value. 
    # 
    # By default "hz" is set to 10. Raising the value will use more CPU when 
    # Redis is idle, but at the same time will make Redis more responsive when 
    # there are many keys expiring at the same time, and timeouts may be 
    # handled with more precision. 
    # 
    # The range is between 1 and 500, however a value over 100 is usually not 
    # a good idea. Most users should use the default of 10 and raise this up to 
    # 100 only in environments where very low latency is required. 
    hz 10 
     
    # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory 
    # is reached. You can select among five behaviors: 
    # 
    # volatile-lru -> remove the key with an expire set using an LRU algorithm 
    # allkeys-lru -> remove any key according to the LRU algorithm 
    # volatile-random -> remove a random key with an expire set 
    # allkeys-random -> remove a random key, any key 
    # volatile-ttl -> remove the key with the nearest expire time (minor TTL) 
    # noeviction -> don't expire at all, just return an error on write operations 
    # 
    # Note: with any of the above policies, Redis will return an error on write 
    # operations, when there are no suitable keys for eviction. 
    # 
    # At the date of writing these commands are: set setnx setex append 
    # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd 
    # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby 
    # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby 
    # getset mset msetnx exec sort 
    # 
    # The default is: 
    # 
    maxmemory-policy noeviction 
     
    # LRU and minimal TTL algorithms are not precise algorithms but approximated 
    # algorithms (in order to save memory), so you can tune it for speed or 
    # accuracy. For default Redis will check five keys and pick the one that was 
    # used less recently, you can change the sample size using the following 
    # configuration directive. 
    # 
    # The default of 5 produces good enough results. 10 Approximates very closely 
    # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. 
    # 
    maxmemory-samples 5

    Replication link和AOF文件中的过期处理

    为了获得正确的行为而不至于导致一致性问题,当一个key过期时DEL操作将被记录在AOF文件并传递到所有相关的slave。也即过期删除操作统一在master实例中进行并向下传递,而不是各salve各自掌控。这样一来便不会出现数据不一致的情形。当slave连接到master后并不能立即清理已过期的key(需要等待由master传递过来的DEL操作),slave仍需对数据集中的过期状态进行管理维护以便于在slave被提升为master会能像master一样独立的进行过期处理。

    总结

    以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

    您可能感兴趣的文章:
    • 浅谈Redis的几个过期策略
    • 大家都应该知道的Redis过期键与过期策略
    • Redis数据过期策略的实现详解
    上一篇:浅析PHP分布式中Redis实现Session的方法
    下一篇:redis+mysql+quartz 一种红包发送功能的实现
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Redis中的数据过期策略详解 Redis,中的,数据,过期,策略,