我们一般通过表达式$sum来计算总和。因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:
1,统计符合条件的所有文档的某个字段的总和;
2,统计每个文档的数组字段里面的各个数据值的和。这两种情况都可以通过$sum表达式来完成。
以上两种情况的聚合统计,分别对应与聚合框架中的 $group
操作步骤和 $project
操作步骤。
1.$group
直接看例子吧。
Case 1
测试集合mycol中的数据如下:
{
title: 'MongoDB Overview',
description: 'MongoDB is no sql database',
by_user: 'runoob.com',
url: 'http://www.runoob.com',
tags: ['mongodb', 'database', 'NoSQL'],
likes: 100
},
{
title: 'NoSQL Overview',
description: 'No sql database is very fast',
by_user: 'runoob.com',
url: 'http://www.runoob.com',
tags: ['mongodb', 'database', 'NoSQL'],
likes: 10
},
{
title: 'Neo4j Overview',
description: 'Neo4j is no sql database',
by_user: 'Neo4j',
url: 'http://www.neo4j.com',
tags: ['neo4j', 'database', 'NoSQL'],
likes: 750
}
现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算
db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])
查询结果如下:
/* 1 */
{
"_id" : "Neo4j",
"num_tutorial" : 1
},
/* 2 */
{
"_id" : "runoob.com",
"num_tutorial" : 2
}
Case 2
统计每个作者被like的总和,计算表达式:
db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
查询结果如下;
/* 1 */
{
"_id" : "Neo4j",
"num_tutorial" : 750
},
/* 2 */
{
"_id" : "runoob.com",
"num_tutorial" : 110
}
Case 3
上面例子有些简单,我们再丰富一下,测试集合sales的数据如下:
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }
需要完成的目标是,基于日期分组,统计每天的销售额,聚合公式为:
db.sales.aggregate(
[
{
$group:
{
_id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } },
totalAmount: { $sum: { $multiply: [ "$price", "$quantity" ] } },
count: { $sum: 1 }
}
}
]
)
查询结果是:
{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 150, "count" : 2 }
{ "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 45, "count" : 2 }
{ "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 20, "count" : 1 }
2.$project阶段
Case 4
假设存在一个 students 集合,其数据结构如下:
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 }
{ "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 }
{ "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
现在的需求是统计每个学生的 平常的测验分数总和、实验分数总和、期末其中分数总和。
db.students.aggregate([
{
$project: {
quizTotal: { $sum: "$quizzes"},
labTotal: { $sum: "$labs" },
examTotal: { $sum: [ "$final", "$midterm" ] }
}
}
])
其查询输出结果如下:
{ "_id" : 1, "quizTotal" : 23, "labTotal" : 13, "examTotal" : 155 }
{ "_id" : 2, "quizTotal" : 19, "labTotal" : 16, "examTotal" : 175 }
{ "_id" : 3, "quizTotal" : 14, "labTotal" : 11, "examTotal" : 148 }
参考文献:
https://www.runoob.com/mongodb/mongodb-aggregate.html
https://docs.mongodb.com/manual/reference/operator/aggregation/sum/index.html
总结
以上所述是小编给大家介绍的MongoDB 中聚合统计计算--$SUM表达式,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
您可能感兴趣的文章:- 基于Django统计博客文章阅读量
- django项目用higcharts统计最近七天文章点击量
- 使用django的ORM框架按月统计近一年内的数据方法
- Golang 函数执行时间统计装饰器的一个实现详解
- Vue自定义指令上报Google Analytics事件统计的方法
- Golang 统计字符串字数的方法示例
- 利用Celery实现Django博客PV统计功能详解
- MongoDB中强大的统计框架Aggregation使用实例解析
- Google 统计图表(Flash)小插件
- go语言之给定英语文章统计单词数量(go语言小练习)