• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    详解MongoDB范围片键和哈希片键

    01 片键

        MongoDB的片键决定了集合中存储的数据在集合中的分布情况,具体的方法是使用片键值的范围来对集合中的数据进行分区。举个例子:

    假如我们以年龄age来作为片键,那么age的范围理论上是0~80,此时,MongoDB会为我们定义age的四个范围区间,他们分别是:0~20,20~40,40~60,60~80,每个范围都是一个chunk,这样我们写入数据之后,数据里面的数据块就有:

    chunk1:  age  0~20

    chunk2:  age  20~40   

    chunk3:age  40~60

    chunk4:age  60~80

    需要注意的是,在一个集合中,被选为片键的这个字段上必须有一个支持片键的索引,或者是必须有一个以这个字段开头的联合索引。

    通常情况下,我们给字段添加的索引,最常见的是普通索引或者哈希索引,

    普通的索引字段如果作为片键,那么这个片键我们称为范围片键;

    哈希索引字段如果作为片键,那么这个片键我们称为哈希片键。

    下面我们来看二者的不同之处:

    02 范围片键(递增片键)

    范围片键,顾名思义,就是将数据根据片键划分到连续的范围里面,在这个模型中,那些值"相似"的文档可能位于同一个片中。例如下面这样:

    这中分片方式是MongoDB默认的分片方式,它有好处也有坏处。

    好处:

        可以高效的读取连续范围内的目标文档。如果你使用范围查询,则可以比较快速的拿到所有的结果值。因为数据所在的数据chunk比较少。

    坏处:

        如果我们写入的数据都几种在某一个分片区间,那么读写性能都可能因为片键划分不均匀而降低。(例如下图中,数据的基数大部分在20~maxKey,则大部分都在chunk C的位置,本身分布不均匀),Chunk C的写入压力将会增大。

    在下列场景中,使用范围片键比较合适:

    1、数据的基数比较大

    2、分片的写入频率比较低(插入较少不容易产生chunk的搬运)

    3、非单调变化的分片(如果单调写,则会分到同一个块里面,容易达到chunk割裂的条件,产生chunk的搬运)

    如果数据满足上面的三个条件,则我们写入的数据可能是这样的:

    就是比较均匀的写入到了数据块中。

    03 哈希片键

        哈希片键使用哈希索引在共享集群中对数据进行分区。哈希索引计算单个字段的哈希值作为索引值,该值用作片键(注意,这里并不是字段本身的值,而是hash之后的值)。

        使用哈希索引,我们写入数据之后,对应写入数据块的图示可能如下:

    从图中我们看出来,虽然我们输入的x值比较接近,分别是25、26、27,但是,经过hash函数之后,他们所在的数据块序号可能差距很远。

    哈希分片在分片集群中提供了更均匀的数据分布,集合中那些具有近似值的文档,可能会被分到不同的块上,mongos更有可能执行广播操作来完成给定的范围查询。

    哈希值得计算,是由MongoDB来负责的,不是应用程序负责的

    作为哈希片键的索引字段应该有如下特点:

    1、具有大量不同的值

    2、哈希索引适合单调变化的字段,例如自增值,时间值等(因为可以将单调的字段通过hash函数映射到不同的块上去,从而分散写入压力,例如下图,虽然数据连续,但是写入了不同的数据块中)

    它的缺点也比较明显,当我们查询某个范围的值的时候,hash索引会查找更多的数据分片,并将最终的结果汇总起来交给我们。

    在实际生产环境中,我们需要结合自己的需求来确定使用哪种类型的片键,再次强调,在设定某个字段作为片键之前,需要先在当前字段创建对应类型的索引,或者创建一个以当前字段开头的联合索引。否则设定片键的语句会报错。

    下面是分片创建从无到有的过程举例:

    1、创建表,只有一个字段name,并插入数据
    mongos> use aaa
    switched to db aaa
    mongos> db.aaa.insert({name:1})
    WriteResult({ "nInserted" : 1 })
    mongos> db.aaa.insert({name:2})
    WriteResult({ "nInserted" : 1 })
    mongos> db.aaa.insert({name:3})
    WriteResult({ "nInserted" : 1 })
    mongos> db.aaa.insert({name:4})
    WriteResult({ "nInserted" : 1 })
    mongos> 
    
    2、查看数据
    mongos> db.aaa.find()
    { "_id" : ObjectId("5fdb7d54d91f2f9bae3b09a1"), "name" : 1 }
    { "_id" : ObjectId("5fdb7d56d91f2f9bae3b09a2"), "name" : 2 }
    { "_id" : ObjectId("5fdb7d59d91f2f9bae3b09a3"), "name" : 3 }
    { "_id" : ObjectId("5fdb7d5cd91f2f9bae3b09a4"), "name" : 4 }
    
    3、允许数据库分片
    mongos> sh.enableSharding("aaa")
    {
     "ok" : 1,
     "operationTime" : Timestamp(1608220038, 3),
     "$clusterTime" : {
      "clusterTime" : Timestamp(1608220038, 3),
      "signature" : {
       "hash" : BinData(0,"shemm3xvSYrMiy9t7gSYcVtFUuE="),
       "keyId" : NumberLong("6894922308364795934")
      }
     }
    }
    mongos> 
    
    4、在name字段创建hash索引
    mongos> db.aaa.createIndex({name:"hashed"},{background:true})
    {
     "raw" : {
      "sharding_yeyz/127.0.0.1:27018,127.0.0.1:27019,127.0.0.1:27020" : {
       "createdCollectionAutomatically" : false,
       "numIndexesBefore" : 1,
       "numIndexesAfter" : 2,
       "ok" : 1
      }
     },
     "ok" : 1,
     "operationTime" : Timestamp(1608220115, 3),
     "$clusterTime" : {
      "clusterTime" : Timestamp(1608220115, 3),
      "signature" : {
       "hash" : BinData(0,"S3Wz9G26eJyOcwa1OLS6TVYu6SE="),
       "keyId" : NumberLong("6894922308364795934")
      }
     }
    }
    
    5、以name字段作为片键创建哈希分片
    mongos> sh.shardCollection("aaa.aaa",{name:"hashed"})
    {
     "collectionsharded" : "aaa.aaa",
     "collectionUUID" : UUID("20a3895e-d821-43ae-9d28-305e6ae03bbc"),
     "ok" : 1,
     "operationTime" : Timestamp(1608220238, 10),
     "$clusterTime" : {
      "clusterTime" : Timestamp(1608220238, 10),
      "signature" : {
       "hash" : BinData(0,"qeQlD3jsSvRZkyamEa2hjbezEdM="),
       "keyId" : NumberLong("6894922308364795934")
      }
     }
    }
    
    6、查看分片信息
    mongos> db.printShardingStatus()
    --- Sharding Status --- 
     sharding version: {
     "_id" : 1,
     "minCompatibleVersion" : 5,
     "currentVersion" : 6,
     "clusterId" : ObjectId("5fafaf4f5785d9965548f687")
     }
     shards:
     { "_id" : "sharding_yeyz", "host" : "sharding_yeyz/127.0.0.1:27018,127.0.0.1:27019,127.0.0.1:27020", "state" : 1 }
     { "_id" : "sharding_yeyz1", "host" : "sharding_yeyz1/127.0.0.1:27024,127.0.0.1:27025,127.0.0.1:27026", "state" : 1 }
     active mongoses:
     "4.0.6" : 1
     autosplit:
     Currently enabled: yes
     balancer:
     Currently enabled: yes
     Currently running: no
     Failed balancer rounds in last 5 attempts: 2
     Last reported error: Could not find host matching read preference { mode: "primary" } for set sharding_yeyz
     Time of Reported error: Wed Nov 18 2020 17:08:14 GMT+0800 (CST)
     Migration Results for the last 24 hours: 
      No recent migrations
     databases:
     { "_id" : "aaa", "primary" : "sharding_yeyz", "partitioned" : true, "version" : { "uuid" : UUID("26e55931-d1c1-4dc5-8a03-b5b0e70f6f43"), "lastMod" : 1 } }
      aaa.aaa
       shard key: { "name" : "hashed" }
       unique: false
       balancing: true
       chunks:
        sharding_yeyz 1
       { "name" : { "$minKey" : 1 } } -->> { "name" : { "$maxKey" : 1 } } on : sharding_yeyz Timestamp(1, 0)

    以上就是详解MongoDB范围片键和哈希片键的详细内容,更多关于MongoDB范围片键和哈希片键的资料请关注脚本之家其它相关文章!

    您可能感兴趣的文章:
    • MongoDB分片键的选择和案例实例详解
    上一篇:mongodb 数据生成Insert 语句的示例代码
    下一篇:MongoDB mongoexport工具的使用简介
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    详解MongoDB范围片键和哈希片键 详解,MongoDB,范围,片键,和,