• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    PostgreSQL 对IN,EXISTS,ANY/ALL,JOIN的sql优化方案

    测试环境:

    postgres=# select version();       
                             version                        
    ---------------------------------------------------------------------------------------------------------
     PostgreSQL 11.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39), 64-bit
    (1 row) 
    postgres=#

    数据准备:

    $ pgbench -i -s 10
    postgres=# \d
           List of relations
     Schema |    Name    | Type | Owner 
    --------+------------------+-------+----------
     public | pgbench_accounts | table | postgres
     public | pgbench_branches | table | postgres
     public | pgbench_history | table | postgres
     public | pgbench_tellers | table | postgres
    (4 rows)
     
    postgres=# select * from pgbench_accounts limit 1;
     aid | bid | abalance |                    filler                    
    -----+-----+----------+--------------------------------------------------------------------------------------
      1 |  1 |    0 |                                          
    (1 row)
     
    postgres=# select * from pgbench_branches limit 1;
     bid | bbalance | filler
    -----+----------+--------
      1 |    0 |
    (1 row)
     
    postgres=# select * from pgbench_history limit 1;
     tid | bid | aid | delta | mtime | filler
    -----+-----+-----+-------+-------+--------
    (0 rows)
     
    postgres=# select * from pgbench_tellers limit 1;
     tid | bid | tbalance | filler
    -----+-----+----------+--------
      1 |  1 |    0 |
    (1 row)
     
    postgres=# select * from pgbench_branches;
     bid | bbalance | filler
    -----+----------+--------
      1 |    0 |
      2 |    0 |
      3 |    0 |
      4 |    0 |
      5 |    0 |
      6 |    0 |
      7 |    0 |
      8 |    0 |
      9 |    0 |
     10 |    0 |
    (10 rows)
     
    postgres=# update pgbench_branches set bbalance=4500000 where bid in (4,7);
    UPDATE 2
    postgres=#

    IN语句

    查询要求:找出那些余额(balance)大于0的每个分支(branch)在表在pgbench_accounts中有多少个账户

    1.使用IN子句 

    SELECT
      count( aid ),bid
    FROM
      pgbench_accounts
    WHERE
      bid IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
    GROUP BY
      bid;
     

    2.使用ANY子句

    SELECT
      count( aid ),bid
    FROM
      pgbench_accounts
    WHERE
      bid = ANY ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
    GROUP BY
      bid;

      

    3.使用EXISTS子句

    SELECT
      count( aid ),bid
    FROM
      pgbench_accounts
    WHERE
      EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid )
    GROUP BY
      bid;

      

    4.使用INNER JOIN

    SELECT
      count( aid ),a.bid
    FROM
      pgbench_accounts a
      JOIN pgbench_branches b ON a.bid = b.bid
    WHERE
      b.bbalance > 0
    GROUP BY
      a.bid;

    在完成这个查询要求的时候,有人可能会假设exists和inner join性能可能会更好,因为他们可以使用两表连接的逻辑和优化。而IN和ANY子句需要使用子查询。

    然而,PostgreSQL(10版本之后)已经智能的足以对上面四种写法产生相同的执行计划!

    所有上面的写法都会产生相同的执行计划:

                                          QUERY PLAN                                      
    ------------------------------------------------------------------------------------------------------------------------------------------------------------------
     Finalize GroupAggregate (cost=23327.73..23330.26 rows=10 width=12) (actual time=97.199..99.014 rows=2 loops=1)
      Group Key: a.bid
      -> Gather Merge (cost=23327.73..23330.06 rows=20 width=12) (actual time=97.191..99.006 rows=6 loops=1)
         Workers Planned: 2
         Workers Launched: 2
         -> Sort (cost=22327.70..22327.73 rows=10 width=12) (actual time=93.762..93.766 rows=2 loops=3)
            Sort Key: a.bid
            Sort Method: quicksort Memory: 25kB
            Worker 0: Sort Method: quicksort Memory: 25kB
            Worker 1: Sort Method: quicksort Memory: 25kB
            -> Partial HashAggregate (cost=22327.44..22327.54 rows=10 width=12) (actual time=93.723..93.727 rows=2 loops=3)
               Group Key: a.bid
               -> Hash Join (cost=1.14..22119.10 rows=41667 width=8) (actual time=24.024..83.263 rows=66667 loops=3)
                  Hash Cond: (a.bid = b.bid)
                  -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.023..43.151 rows=333333 loops=3)
                  -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.027..0.028 rows=2 loops=3)
                     Buckets: 1024 Batches: 1 Memory Usage: 9kB
                     -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.018..0.020 rows=2 loops=3)
                        Filter: (bbalance > 0)
                        Rows Removed by Filter: 8
     Planning Time: 0.342 ms
     Execution Time: 99.164 ms
    (22 rows)

    那么,我们是否可以得出这样的结论:我们可以随意地编写查询,而PostgreSQL的智能将会处理其余的问题?!

    等等!

    如果我们考虑排除情况,事情会变得不同。

    排除查询

    查询要求:找出那些余额(balance)不大于0的每个分支(branch)在表在pgbench_accounts中有多少个账户

    1.使用NOT IN

    SELECT
      count( aid ),bid
    FROM
      pgbench_accounts
    WHERE
      bid NOT IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
    GROUP BY
      bid;

    执行计划:

                                        QUERY PLAN                                    
    ----------------------------------------------------------------------------------------------------------------------------------------------------------
     Finalize GroupAggregate (cost=23645.42..23647.95 rows=10 width=12) (actual time=128.606..130.502 rows=8 loops=1)
      Group Key: pgbench_accounts.bid
      -> Gather Merge (cost=23645.42..23647.75 rows=20 width=12) (actual time=128.598..130.490 rows=24 loops=1)
         Workers Planned: 2
         Workers Launched: 2
         -> Sort (cost=22645.39..22645.42 rows=10 width=12) (actual time=124.960..124.963 rows=8 loops=3)
            Sort Key: pgbench_accounts.bid
            Sort Method: quicksort Memory: 25kB
            Worker 0: Sort Method: quicksort Memory: 25kB
            Worker 1: Sort Method: quicksort Memory: 25kB
            -> Partial HashAggregate (cost=22645.13..22645.23 rows=10 width=12) (actual time=124.917..124.920 rows=8 loops=3)
               Group Key: pgbench_accounts.bid
               -> Parallel Seq Scan on pgbench_accounts (cost=1.13..21603.46 rows=208333 width=8) (actual time=0.078..83.134 rows=266667 loops=3)
                  Filter: (NOT (hashed SubPlan 1))
                  Rows Removed by Filter: 66667
                  SubPlan 1
                   -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.020..0.021 rows=2 loops=3)
                      Filter: (bbalance > 0)
                      Rows Removed by Filter: 8
     Planning Time: 0.310 ms
     Execution Time: 130.620 ms
    (21 rows)
     
    postgres=#
    

    2.使用>ALL

    SELECT
      count( aid ),bid
    FROM
      pgbench_accounts
    WHERE
      bid > ALL ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
    GROUP BY
      bid;

    执行计划:

                                         QUERY PLAN                                    
    ------------------------------------------------------------------------------------------------------------------------------------------------------------
     Finalize GroupAggregate (cost=259581.79..259584.32 rows=10 width=12) (actual time=418.220..419.913 rows=8 loops=1)
      Group Key: pgbench_accounts.bid
      -> Gather Merge (cost=259581.79..259584.12 rows=20 width=12) (actual time=418.212..419.902 rows=24 loops=1)
         Workers Planned: 2
         Workers Launched: 2
         -> Sort (cost=258581.76..258581.79 rows=10 width=12) (actual time=413.906..413.909 rows=8 loops=3)
            Sort Key: pgbench_accounts.bid
            Sort Method: quicksort Memory: 25kB
            Worker 0: Sort Method: quicksort Memory: 25kB
            Worker 1: Sort Method: quicksort Memory: 25kB
            -> Partial HashAggregate (cost=258581.50..258581.60 rows=10 width=12) (actual time=413.872..413.875 rows=8 loops=3)
               Group Key: pgbench_accounts.bid
               -> Parallel Seq Scan on pgbench_accounts (cost=0.00..257539.83 rows=208333 width=8) (actual time=0.054..367.244 rows=266667 loops=3)
                  Filter: (SubPlan 1)
                  Rows Removed by Filter: 66667
                  SubPlan 1
                   -> Materialize (cost=0.00..1.13 rows=1 width=4) (actual time=0.000..0.001 rows=2 loops=1000000)
                      -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.001..0.001 rows=2 loops=337880)
                         Filter: (bbalance > 0)
                         Rows Removed by Filter: 8
     Planning Time: 0.218 ms
     Execution Time: 420.035 ms
    (22 rows) 
    postgres=#
    

    3.使用NOT EXISTS

    SELECT
      count( aid ),bid
    FROM
      pgbench_accounts
    WHERE
      NOT EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid )
    GROUP BY
      bid;

    执行计划:

                                          QUERY PLAN                                     
    ----------------------------------------------------------------------------------------------------------------------------------------------------------------
     Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=152.024..153.931 rows=8 loops=1)
      Group Key: pgbench_accounts.bid
      -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=152.014..153.917 rows=24 loops=1)
         Workers Planned: 2
         Workers Launched: 2
         -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=147.782..147.786 rows=8 loops=3)
            Sort Key: pgbench_accounts.bid
            Sort Method: quicksort Memory: 25kB
            Worker 0: Sort Method: quicksort Memory: 25kB
            Worker 1: Sort Method: quicksort Memory: 25kB
            -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=147.732..147.737 rows=8 loops=3)
               Group Key: pgbench_accounts.bid
               -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.134..101.884 rows=266667 loops=3)
                  Hash Cond: (pgbench_accounts.bid = pgbench_branches.bid)
                  -> Parallel Seq Scan on pgbench_accounts (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.032..45.174 rows=333333 loops=3)
                  -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.036..0.037 rows=2 loops=3)
                     Buckets: 1024 Batches: 1 Memory Usage: 9kB
                     -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.025..0.027 rows=2 loops=3)
                        Filter: (bbalance > 0)
                        Rows Removed by Filter: 8
     Planning Time: 0.322 ms
     Execution Time: 154.040 ms
    (22 rows) 
    postgres=#
    

    4.使用LEFT JOIN和IS NULL

    SELECT
      count( aid ),a.bid
    FROM
      pgbench_accounts a
      LEFT JOIN pgbench_branches b ON a.bid = b.bid AND b.bbalance > 0
    WHERE
      b.bid IS NULL
    GROUP BY
      a.bid;

    执行计划:

                                          QUERY PLAN                                      
    ------------------------------------------------------------------------------------------------------------------------------------------------------------------
     Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=145.298..147.096 rows=8 loops=1)
      Group Key: a.bid
      -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=145.288..147.083 rows=24 loops=1)
         Workers Planned: 2
         Workers Launched: 2
         -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=141.883..141.887 rows=8 loops=3)
            Sort Key: a.bid
            Sort Method: quicksort Memory: 25kB
            Worker 0: Sort Method: quicksort Memory: 25kB
            Worker 1: Sort Method: quicksort Memory: 25kB
            -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=141.842..141.847 rows=8 loops=3)
               Group Key: a.bid
               -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.087..99.535 rows=266667 loops=3)
                  Hash Cond: (a.bid = b.bid)
                  -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.025..44.337 rows=333333 loops=3)
                  -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.026..0.027 rows=2 loops=3)
                     Buckets: 1024 Batches: 1 Memory Usage: 9kB
                     -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.019..0.020 rows=2 loops=3)
                        Filter: (bbalance > 0)
                        Rows Removed by Filter: 8
     Planning Time: 0.231 ms
     Execution Time: 147.180 ms
    (22 rows) 
    postgres=#
    

    NOT IN 和 > ALL生成执行计划都包含了一个子查询。他们是各自独立的。

    而NOT EXISTS和LEFT JOIN生成了相同的执行计划。

    这些hash连接(或hash anti join)是完成查询要求的最灵活的方式。这也是推荐exists或join的原因。因此,推荐使用exists或join的经验法则是有效的。

    但是,我们继续往下看! 即使有了子查询执行计划,NOT IN子句的执行时间也会更好?

    是的。PostgreSQL做了出色的优化,PostgreSQL将子查询计划进行了hash处理。因此PostgreSQL对如何处理IN子句有了更好的理解,这是一种逻辑思维方式,因为很多人倾向于使用IN子句。子查询返回的行很少,但即使子查询返回几百行,也会发生同样的情况。

    但是,如果子查询返回大量行(几十万行)怎么办?让我们尝试一个简单的测试:

    CREATE TABLE t1 AS
    SELECT * FROM generate_series(0, 500000) id;
     
    CREATE TABLE t2 AS
    SELECT (random() * 4000000)::integer id
    FROM generate_series(0, 4000000);
     
    ANALYZE t1;
    ANALYZE t2;
     
    EXPLAIN SELECT id
    FROM t1
    WHERE id NOT IN (SELECT id FROM t2);

    执行计划:

        QUERY PLAN                 
    --------------------------------------------------------------------------------
     Gather (cost=1000.00..15195064853.01 rows=250000 width=4)
      Workers Planned: 1
      -> Parallel Seq Scan on t1 (cost=0.00..15195038853.01 rows=147059 width=4)
         Filter: (NOT (SubPlan 1))
         SubPlan 1
          -> Materialize (cost=0.00..93326.01 rows=4000001 width=4)
             -> Seq Scan on t2 (cost=0.00..57700.01 rows=4000001 width=4)
    (7 rows)
     
    postgres=#

    这里,执行计划将子查询进行了物化。代价评估变成了15195038853.01。(PostgreSQL的默认设置,如果t2表的行低于100k,会将子查询进行hash)。这样就会严重影响性能。因此,对于那种子查询返回的行数很少的场景,IN子句可以起到很好的作用。

    其它注意点

    有的!在我们用不同的方式写查询的时候,可能有数据类型的转换。

    比如,语句:

    EXPLAIN ANALYZE SELECT * FROM emp WHERE gen = ANY(ARRAY['M', 'F']);

    就会发生隐式的类型转换:

    Seq Scan on emp (cost=0.00..1.04 rows=2 width=43) (actual time=0.023..0.026 rows=3 loops=1)
     Filter: ((gen)::text = ANY ('{M,F}'::text[]))

    这里的(gen)::text就发生了类型转换。如果在大表上,这种类型转换的代价会很高,因此,PostgreSQL对IN子句做了更好的处理。

    EXPLAIN ANALYZE SELECT * FROM emp WHERE gen IN ('M','F');
     
     Seq Scan on emp (cost=0.00..1.04 rows=3 width=43) (actual time=0.030..0.034 rows=3 loops=1)
      Filter: (gen = ANY ('{M,F}'::bpchar[]))

    将IN子句转换成了ANY子句,没有对gen列进行类型转换。而是将M\F转成了bpchar(内部等价于char)

    总结

    简单来说,exists和直接join表通常比较好。

    很多情况下,PostgreSQL将IN子句换成被hash的子计划。在一些特殊场景下,IN可以获得更好的执行计划。

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • PostgreSQL利用递归优化求稀疏列唯一值的方法
    • PostgreSQL删除更新优化操作
    • Postgresql排序与limit组合场景性能极限优化详解
    • postgresql通过索引优化查询速度操作
    • postgresql关于like%xxx%的优化操作
    上一篇:postgresql 13.1 insert into select并行查询的实现
    下一篇:浅谈PostgreSQL中的孤儿文件用法(orphaned data files)
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    PostgreSQL 对IN,EXISTS,ANY/ALL,JOIN的sql优化方案 PostgreSQL,对,EXISTS,ANY,ALL,