• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Postgresql的select优化操作(快了200倍)

    对于庞大的数据,检索sql的编写要格外小心,有很多平时不注意的sql可能就会变成瓶颈。

    比如, 我们有个系统, 其中t96_pd_log表,记录数8000w多,在开发阶段乃至用了那么多年都没问题, 最近却发生频繁死锁的问题, 查数据库后台发现问题出在一个select语句上, 它耗时高达2.4-2.7s,这对于一个需要高并发的系统来说当然是致命的。

    数据表t96_pd_log有两条index, 一条的字段组成是f96_mgtbarcd,另一条的字段组成是f96_result_type, 检索sql是这样写的:

    select recseq,f96_create_dt,f96_op from t96_pd_log where f96_mgtbarcd='113D1907032385' 
    and f96_station='AS01-L113' and f96_result_type='TFT' 
    and f96_qty=1 order by f96_create_dt desc limit 1 

    意在找出AS01-L113站位最近一条有效的记录,而这条sql有足够的index支持,但耗时高达2.7s。

    F7查一下,居然包含f96_result_type的这支索引也参与运算, 这就出事了, 因为f96_result_type有相同值的记录极其多,从图3也可以看出, 这也是主要耗费时间的环节。

    通过数据分析, f96_mgtbarcd值相同的记录数很少, 所以我们可以将顺序改一下,先用f96_mgtbarcd作为过滤器生成一个子集后, 再从这个子集里面做f96_result_type等过滤, 跑了一下,13ms, 足足快了这样就快200多倍,如下:

    with a as (
    select recseq,f96_create_dt,f96_op,f96_station,f96_result_type,f96_qty from t96_pd_log where f96_mgtbarcd='113D1907032385'
    ) 
    select recseq,f96_create_dt,f96_op from a where f96_station='AS01-L113' and f96_result_type='TP' and f96_qty=1 order by f96_create_dt desc limit 1

    ps:我用的工具是 pgAdmin自带的,F7, Shift-F7

    补充:PostgreSql查询优化之根据执行计划优化SQL

    1、执行计划路径选择

    postgresql查询规划过程中,查询请求的不同执行方案是通过建立不同的路径来表达的,在生成许多符合条件的路径之后,要从中选择出代价最小的路径(基于成本运算),把它转化为一个计划,传递给执行器执行,规划器的核心工作就是生成多条路径,然后从中找出最优的那一条。

    1.1代价评估

    评估路径优劣的依据是用系统表pg_statistic中的统计信息估算出来的不同路径的代价(cost),PostgreSQL估计计划成本的方式:基于统计信息估计计划中各个节点的成本。PostgreSQL会分析各个表来获取一个统计信息样本(这个操作通常是由autovacuum这个守护进程周期性的执行analyze,来收集这些统计信息,然后保存到pg_statistic和pg_class里面)。

    1.2用于估算代价的参数postgresql.conf

    # - Planner Cost Constants - 
    #seq_page_cost = 1.0  # measured on an arbitrary scale 顺序磁盘扫描时单个页面的开销 
    #random_page_cost = 4.0  # same scale as above 随机磁盘访问时单页面的读取开销 
    #cpu_tuple_cost = 0.01  # same scale as above cpu处理每一行的开销 
    #cpu_index_tuple_cost = 0.005 # same scale as above cpu处理每个索引行的开销 
    #cpu_operator_cost = 0.0025 # same scale as above cpu处理每个运算符或者函数调用的开销 
    #parallel_tuple_cost = 0.1 # same scale as above 计算并行处理的成本,如果成本高于非并行,则不会开启并行处理。 
    #parallel_setup_cost = 1000.0 # same scale as above 
    #min_parallel_relation_size = 8MB 
    #effective_cache_size = 4GB 再一次索引扫描中可用的文件系统内核缓冲区有效大小

    也可以使用 show all的方式查看

    1.3 路径的选择

    --查看表信息 
    highgo=# \d t_jcxxgl_tjaj 
      Table "db_jcxx.t_jcxxgl_tjaj"
     
     Column |  Type  | Modifiers --------------+--------------------------------+----------- 
     c_bh | character(32)   | not null 
     c_xzdm | character varying(300)  | 
     c_jgid | character(32)   | 
     c_ajbm | character(22)   | 
    ... 
    Indexes: 
     "t_jcxxgl_tjaj_pkey" PRIMARY KEY, btree (c_bh) 
     "idx_ttjaj_cah" btree (c_ah) 
     "idx_ttjaj_dslrq" btree (d_slrq)

    首先更新统计信息vacuum analyze t_jcxxgl_tjaj,许多时候可能因为统计信息的不准确导致了不正常的执行计划--执行计划。

    --执行计划,全表扫描 
    highgo=# explain (analyze,verbose,costs,buffers,timing)select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >='2018-03-18'; 
           QUERY PLAN      ------------------------------------------------------------------------------------------------------------ 
     Seq Scan on db_jcxx.t_jcxxgl_tjaj (cost=0.00..9.76 rows=3 width=96) (actual time=1.031..1.055 rows=3 loops 
    =1) 
     Output: c_bh, c_xzdm, c_jgid, c_ajbm 
     Filter: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18'::date) 
     Rows Removed by Filter: 138 
     Buffers: shared hit=8 
     Planning time: 6.579 ms 
     Execution time: 1.163 ms 
    (7 rows)
    

    如上,d_slrq是有索引的,但是执行计划中并没有走索引,为什么呢?我们继续往下看。

    --执行计划,关闭全表扫描 
    highgo=# set session enable_seqscan = off; 
    SET 
    highgo=# explain (analyze,verbose,costs,buffers,timing)select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >='2018-03-18'; 
            QUERY PLAN        ------------------------------------------------------------------------------------------------------------
     
     Index Scan using idx_ttjaj_dslrq on db_jcxx.t_jcxxgl_tjaj (cost=0.14..13.90 rows=3 width=96) (actual time=0.012..0.026 rows=3 loops=1) 
     Output: c_bh, c_xzdm, c_jgid, c_ajbm 
     Index Cond: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18'::date) 
     Buffers: shared hit=4 
     Planning time: 0.309 ms 
     Execution time: 0.063 ms 
    (6 rows)

    d_slrq上面有btree索引,但是查看执行计划并没有走索引,这是为什么呢?

    代价计算:

    一个路径的估算由三部分组成:启动代价(startup cost),总代价(totalcost),执行结果的排序方式(pathkeys)

    代价估算公式:

    总代价=启动代价+I/O代价+CPU代价(cost=S+P+W*T)

    P:执行时要访问的页面数,反应磁盘的I/O次数

    T:表示在执行时所要访问的元组数,反映了cpu开销

    W:表示磁盘I/O代价和CPU开销建的权重因子

    统计信息:

    统计信息的其中一部分是每个表和索引中项的总数,以及每个表和索引占用的磁盘块数。这些信息保存在pg_class表的reltuples和relpages列中。我们可以这样查询相关信息:

    --查看统计信息
    highgo=# select relpages,reltuples from pg_class where relname ='t_jcxxgl_tjaj'; 
     relpages | reltuples ----------+----------- 
     8 | 141 
    (1 row)

    total_cost = 1(seq_page_cost)*8(磁盘总页数)+0.01(cpu_tuple_cost)*141(表的总记录数)+0.0025(cpu_operation_cost)*141(表的总记录数)=9.7625

    可以看到走索引的cost=13.90比全表扫描cost=9.76要大。所以上面没有关闭全表扫描的时候,根据成本代价,执行计划走的全表扫描。在表较小的情况下,全表扫描比索引扫描更有效, index scan 至少要发生两次I/O,一次是读取索引块,一次是读取数据块。

    2、一个SQL优化实例

    2.1慢SQL:

    select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly from db_zxzhld.t_zhld_db dbxx join db_zxzhld.t_zhld_ajdbxx dbaj on dbxx.c_bh = dbaj.c_dbbh where dbxx.n_valid=1 and dbxx.n_state in (1,2,3) and dbxx.c_dbztbh='1003' and dbaj.c_zblx='1003' and dbaj.c_dbfy='0' and dbaj.c_gy = '2550' and c_ajbh in (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc limit 15 offset 0;

    慢sql耗时:7s

    先过下这个sql是干什么的、首先dbxx和dbaj的一个join连接然后dbaj.c_ajbh要包含在zbaj表里面,做了个排序,取了15条记录、大概就这样。

    Sql有个缺点就是我不知道查询的字段是从那个表里面取的、建议加上表别名.字段。

    查看该sql的表的数据量:

    t_zhld_db :1311

    t_zhld_ajdbxx :341296

    t_zhld_zbajxx :1027619

    执行计划:

    01 Limit (cost=36328.67..36328.68 rows=1 width=107) (actual time=88957.677..88957.729 rows=15 loops=1)
     
    02 -> Sort (cost=36328.67..36328.68 rows=1 width=107) (actual time=88957.653..88957.672 rows=15 loops=1)
     
    03  Sort Key: dbaj.d_larq, dbaj.c_ajbh
     
    04  Sort Method: top-N heapsort Memory: 27kB
     
    05  -> Nested Loop Semi Join (cost=17099.76..36328.66 rows=1 width=107) (actual time=277.794..88932.662 rows=8605 loops=1)
     
    06  Join Filter: ((dbaj.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text)
     
    07  Rows Removed by Join Filter: 37018710
     
    08  -> Nested Loop (cost=0.00..19200.59 rows=1 width=107) (actual time=199.141..601.845 rows=8605 loops=1)
     
    09   Join Filter: (dbxx.c_bh = dbaj.c_dbbh)
     
    10   Rows Removed by Join Filter: 111865
     
    11   -> Seq Scan on t_zhld_ajdbxx dbaj (cost=0.00..19117.70 rows=219 width=140) (actual time=198.871..266.182 rows=8605 loops=1)
     
    12    Filter: ((n_valid = 1) AND ((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text))
     
    13    Rows Removed by Filter: 332691
     
    14   -> Materialize (cost=0.00..66.48 rows=5 width=33) (actual time=0.001..0.017 rows=14 loops=8605)
     
    15    -> Seq Scan on t_zhld_db dbxx (cost=0.00..66.45 rows=5 width=33) (actual time=0.044..0.722 rows=14 loops=1)
     
    16     Filter: ((n_valid = 1) AND ((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[])))
     
    17     Rows Removed by Filter: 1297
     
    18  -> Materialize (cost=17099.76..17117.46 rows=708 width=32) (actual time=0.006..4.890 rows=4303 loops=8605)
     
    19   -> HashAggregate (cost=17099.76..17106.84 rows=708 width=32) (actual time=44.011..54.924 rows=8605 loops=1)
     
    20    Group Key: t_zhld_zbajxx.c_ajbh
     
    21    -> Bitmap Heap Scan on t_zhld_zbajxx (cost=163.36..17097.99 rows=708 width=32) (actual time=5.218..30.278 rows=8605 loops=1)
     
    22     Recheck Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text))
     
    23     Filter: ((c_gy)::text = '2550'::text)
     
    24     Rows Removed by Filter: 21849
     
    25     Heap Blocks: exact=960
     
    26     -> Bitmap Index Scan on i_tzhldzbajxx_zblx_dbzt (cost=0.00..163.19 rows=5876 width=0) (actual time=5.011..5.011 rows=30458 loops=1)
     
    27     Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text))
     
    28 Planning time: 1.258 ms 
    29 Execution time: 88958.029 ms

    执行计划解读:

    1:第27->21行,通过索引i_tzhldzbajxx_zblx_dbzt过滤表t_zhld_zbajxx的数据,然后根据过滤条件(c_gy)::text = '2550'::text过滤最终返回8605条数据

    2:第17->15行,根据条件过滤t_zhld_db表的数据,最终返回了14条数据

    3:第20->19行,对表t_zhld_zbajxx做group by的操作

    4:第13->11行,全表扫描t_zhld_ajdbxx 最终返回了8605条数据

    5:第08行,根据t_zhld_ajdbxx返回的8605条结果集作为驱动表和t_zhld_db的结果集(14条)做嵌套循环,t_zhld_db的结果集被循环了8605次。然后过滤掉了其中的111865条记录,那么最终将得到(8605*14-111865) = 8605

    6:第07->05行,根据第08和18行返回的结果集最终做了Nested Loop Semi Join,第18行的4303条结果集被循环了8605次,(4303*8605-37018710)=8605

    7: 第04->02行,对最终的8605条记录进行排序

    8:第01行,limit最终获取15条记录

    整个执行计划中耗时最长的地方在05行Nested Loop Semi Join,actual time=277.794..88932.662, 表db_zxzhld.t_zhld_db dbxx和db_zxzhld.t_zhld_ajdbxx均是全表扫描

    2.2具体优化步骤

    查看索引页并没有索引,创建c_ajbh,c_dbbh等逻辑外键的索引

    drop index if exists I_T_ZHLD_AJDBXX_AJBH; 
    create index I_T_ZHLD_AJDBXX_AJBH on T_ZHLD_AJDBXX (c_ajbh); 
    commit; 
    drop index if exists I_T_ZHLD_AJDBXX_DBBH; 
    create index I_T_ZHLD_AJDBXX_DBBH on T_ZHLD_AJDBXX (c_dbbh); 
    commit;

    创建d_larq,c_ajbh的排序索引:

    drop index if exists I_T_ZHLD_AJDBXX_m6;create index I_T_ZHLD_AJDBXX_m6 on T_ZHLD_AJDBXX (c_zblx,c_dbfy,c_gy,d_larq asc,c_ajbh asc); 
    commit; 
    drop index if exists I_T_ZHLD_ZBAJXX_h3 ; 
    create index I_T_ZHLD_ZBAJXX_h3 on db_zxzhld.t_zhld_zbajxx (n_dbzt,c_zblx,c_gy,c_gy); 
    commit;

    创建索引后执行计划有了改变,原来的dbaj表和dbxx表先做nestedloop变成了zbaj和dbaj表先做了nestedloop join,总的cost也从36328.68降到了12802.87,

    执行计划

    Limit (cost=12802.87..12802.87 rows=1 width=107) (actual time=4263.598..4263.648 rows=15 loops=1) 
     -> Sort (cost=12802.87..12802.87 rows=1 width=107) (actual time=4263.592..4263.609 rows=15 loops=1) 
     Sort Key: dbaj.d_larq, dbaj.c_ajbh 
     Sort Method: top-N heapsort Memory: 27kB 
     -> Nested Loop (cost=2516.05..12802.86 rows=1 width=107) (actual time=74.240..4239.723 rows=8605 loops=1) 
      Join Filter: (dbaj.c_dbbh = dbxx.c_bh) 
      Rows Removed by Join Filter: 111865 
      -> Nested Loop (cost=2516.05..12736.34 rows=1 width=140) (actual time=74.083..327.974 rows=8605 loops=1) 
       -> HashAggregate (cost=2515.62..2522.76 rows=714 width=32) (actual time=74.025..90.185 rows=8605 loops=1) 
        Group Key: ("ANY_subquery".c_ajbh)::text 
        -> Subquery Scan on "ANY_subquery" (cost=2499.56..2513.84 rows=714 width=32) (actual time=28.782..59.823 rows=8605 loops=1) 
        -> HashAggregate (cost=2499.56..2506.70 rows=714 width=32) (actual time=28.778..39.968 rows=8605 loops=1) 
         Group Key: zbaj.c_ajbh 
         -> Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx zbaj (cost=0.42..2497.77 rows=715 width=32) (actual time=0.062..15.104 rows=8605 loops=1) 
          Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text)) 
       -> Index Scan using i_t_zhld_ajdbxx_ajbh on t_zhld_ajdbxx dbaj (cost=0.42..14.29 rows=1 width=140) (actual time=0.015..0.021 rows=1 loops=8605) 
        Index Cond: ((c_ajbh)::text = ("ANY_subquery".c_ajbh)::text) 
        Filter: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text)) 
        Rows Removed by Filter: 1 
      -> Seq Scan on t_zhld_db dbxx (cost=0.00..66.45 rows=5 width=33) (actual time=0.015..0.430 rows=14 loops=8605) 
       Filter: ((n_valid = 1) AND ((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[]))) 
       Rows Removed by Filter: 1298 
    Planning time: 1.075 ms 
    Execution time: 4263.803 ms

    执行的时间还是要4s左右仍然不满足需求,并且没有使用上I_T_ZHLD_AJDBXX_m6这个索引。

    2.3等价改写SQL(1)

    等价改写:将排序条件加入db_zxzhld.t_zhld_ajdbxx让其先排序,再和t_zhld_db表连接。

    修改后sql:

    Select dbaj.c_ajbh, dbaj.c_ah, dbaj.c_cbfy, dbaj.c_cbrxm, dbaj.d_larq, dbaj.d_jarq, dbaj.n_dbjg, dbaj.c_yqly from (select * from db_zxzhld.t_zhld_db where n_valid=1 and n_state in (1,2,3) and c_dbztbh='1003' )dbxx
     join (select * from db_zxzhld.t_zhld_ajdbxx where n_valid=1 and c_zblx='1003' 
     and c_dbfy='0' and c_gy = '2550' and 
    c_ajbh in (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc)dbajon dbxx.c_bh = dbaj.c_dbbh 
     limit 15 offset 0

    再次查看执行计划:

    Limit (cost=3223.92..3231.97 rows=1 width=107) (actual time=127.291..127.536 rows=15 loops=1)
     
     -> Nested Loop (cost=3223.92..3231.97 rows=1 width=107) (actual time=127.285..127.496 rows=15 loops=1)
     
     -> Sort (cost=3223.64..3223.65 rows=1 width=140) (actual time=127.210..127.225 rows=15 loops=1)
     
      Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh
     
      Sort Method: quicksort Memory: 2618kB
     
      -> Hash Semi Join (cost=2523.19..3223.63 rows=1 width=140) (actual time=55.913..107.265 rows=8605 loops=1)
     
       Hash Cond: ((t_zhld_ajdbxx.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text)
     
       -> Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx (cost=0.42..700.28 rows=219 width=140) (actual time=0.065..22.005 rows=8605 loops=1)
     
        Index Cond: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text))
     
       -> Hash (cost=2513.84..2513.84 rows=714 width=32) (actual time=55.802..55.802 rows=8605 loops=1)
     
        Buckets: 16384 (originally 1024) Batches: 1 (originally 1) Memory Usage: 675kB
     
        -> HashAggregate (cost=2499.56..2506.70 rows=714 width=32) (actual time=30.530..43.275 rows=8605 loops=1)
     
        Group Key: t_zhld_zbajxx.c_ajbh
     
        -> Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx (cost=0.42..2497.77 rows=715 width=32) (actual time=0.043..15.552 rows=8605 loops=1)
     
         Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text))
     
     -> Index Scan using t_zhld_db_pkey on t_zhld_db (cost=0.28..8.30 rows=1 width=33) (actual time=0.009..0.011 rows=1 loops=15)
     
      Index Cond: (c_bh = t_zhld_ajdbxx.c_dbbh) 
      Filter: (((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[]))) 
    Planning time: 1.154 ms 
    Execution time: 127.734 ms

    这一次可以看出,ajdbxx和zbajxx表做了hash semi join 消除了nestedloop,cost降到了3231.97。并且使用上了i_t_zhld_ajdbxx_m6子查询中in的结果集有一万多条数据。

    继续尝试使用exists等价改写in,看能否有更好的结果

    2.4等价改写SQL(2)

    等价改写:将in替换为exists:

    select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqlyfrom (select c_bh from db_zxzhld.t_zhld_db where n_state in (1,2,3) and c_dbztbh='1003' )dbxx
     join (select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly,c_dbbh from db_zxzhld.t_zhld_ajdbxx ajdbxxwhere c_zblx='1003'
     and c_dbfy='0' and c_gy = '2550' and 
    exists (select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx zbajxx where ajdbxx.c_ajbh = zbajxx.c_ajbh and n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc, c_ajbh asc)dbajon dbxx.c_bh = dbaj.c_dbbh 
     limit 15 offset 0

    再次查看执行计划:

    Limit (cost=1.12..2547.17 rows=1 width=107) (actual time=0.140..0.727 rows=15 loops=1) 
     -> Nested Loop (cost=1.12..2547.17 rows=1 width=107) (actual time=0.136..0.689 rows=15 loops=1) 
     -> Nested Loop Semi Join (cost=0.85..2538.84 rows=1 width=140) (actual time=0.115..0.493 rows=15 loops=1) 
      -> Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx t2 (cost=0.42..700.28 rows=219 width=140) (actual time=0.076..0.127 rows=15 loops=1) 
       Index Cond: (((c_zblx)::text = '1003'::text) AND ((c_dbfy)::text = '0'::text) AND ((c_gy)::text = '2550'::text)) 
      -> Index Scan using i_t_zhld_zbajxx_c_ajbh on t_zhld_zbajxx t3 (cost=0.42..8.40 rows=1 width=32) (actual time=0.019..0.019 rows=1 loops=15) 
       Index Cond: ((c_ajbh)::text = (t2.c_ajbh)::text) 
       Filter: (((c_zblx)::text = '1003'::text) AND ((c_gy)::text = '2550'::text) AND (n_dbzt = 1)) 
     -> Index Scan using t_zhld_db_pkey on t_zhld_db (cost=0.28..8.30 rows=1 width=33) (actual time=0.007..0.008 rows=1 loops=15) 
      Index Cond: (c_bh = t2.c_dbbh) 
      Filter: (((c_dbztbh)::text = '1003'::text) AND (n_state = ANY ('{1,2,3}'::integer[]))) 
    Planning time: 1.268 ms 
    Execution time: 0.859 ms

    可以看出使用exist效果更好,最终cost 2547.17

    (1).少了t_zhld_zbajxx表的group by操作:Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh。(这一步是因为使用了索引中的排序)

    (2).少了分组的操作:Group Key: t_zhld_zbajxx.c_ajbh。

    第(2)为什么这个查询消除了t_zhld_zbajxx表的group by操作呢?

    原因是exists替换了distinct的功能,一旦满足条件则立刻返回。所以使用exists的时候子查询可以直接去掉distinct。

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • postgreSql分组统计数据的实现代码
    • postgresql 计算两点距离的2种方法小结
    • postgresql 计算距离的实例(单位直接生成米)
    • postgresql 除法保留小数位的实例
    • PostgreSQL 性能优化之服务器参数配置操作
    • Postgresql 动态统计某一列的某一值出现的次数实例
    上一篇:postgresql关于like%xxx%的优化操作
    下一篇:PostgreSQL 性能优化之服务器参数配置操作
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Postgresql的select优化操作(快了200倍) Postgresql,的,select,优化,操作,