• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    深入讲解MySQL Innodb索引的原理

    引言

    回想四年前,我在学习mysql的索引这块的时候,老师在讲索引的时候,是像下面这么说的

    索引就像一本书的目录。而当用户通过索引查找数据时,就好比用户通过目录查询某章节的某个知识点。这样就帮助用户有效地提高了查找速度。所以,使用索引可以有效地提高数据库系统的整体性能。

    嗯,这么说其实也对。但是呢,大家看完这种说法,其实可能还是觉得太抽象了!因此呢,我还想再深入的细说一下,所以就有了此文!

    需要说明的是,我说的内容只在Mysql的Innodb引擎中是成立的。在Sql Server、oracle、Mysql的Mysiam引擎中的正确性,不一定成立!

    InnoDB是 MySQL最常用的存储引擎,了解InnoDB存储引擎的索引对于日常工作有很大的益处,索引的存在便是为了加速数据库行记录的检索。

    什么是索引?

    索引(index)翻译为一个目录,用于快速定位我们想要找的数据的位置。例如:我们把一个数据库比作一本书,而索引(index)就是书中的目录,此刻要找到书的某个感兴趣的内容,我们一般是不会整本书翻完再去确认该内容在哪里,而是通过书的目录,定位到该内容章节所在页数,最后直接翻到该页面。

    我们来看看在数据库中的索引:

    全表扫描 VS 索引扫描

    以字典为例,全表扫描就是如果我们查找某个字时,那么通读一遍新华字典,然后找到我们想要找到的字,而跟全表扫描相对应的就是索引查找,索引查找就是在表的索引部分找到我们想要找的数据具体位置,然后会到表里面将我们想要找的数据全部查出。

    OK,废话不多说,开始啰嗦!

    正文

    索引的科普

    先引进聚簇索引和非聚簇索引的概念!

    我们平时在使用的Mysql中,使用下述语句

    CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
     [USING index_type]
     ON tbl_name (index_col_name,...)
     
    index_col_name:
     col_name [(length)] [ASC | DESC]

    创建的索引,如复合索引、前缀索引、唯一索引,都是属于非聚簇索引,在有的书籍中,又将其称为辅助索引(secondary index)。在后文中,我们称其为非聚簇索引,其数据结构为B+树。

    那么,这个聚簇索引,在Mysql中是没有语句来另外生成的。在Innodb中,Mysql中的数据是按照主键的顺序来存放的。那么聚簇索引就是按照每张表的主键来构造一颗B+树,叶子节点存放的就是整张表的行数据。由于表里的数据只能按照一颗B+树排序,因此一张表只能有一个聚簇索引。

    在Innodb中,聚簇索引默认就是主键索引。

    这个时候,机智的读者,应该要问我

    如果我的表没建主键呢?

    回答是,如果没有主键,则按照下列规则来建聚簇索引

    没有主键时,会用一个唯一且不为空的索引列做为主键,成为此表的聚簇索引如果没有这样的索引,InnoDB会隐式定义一个主键来作为聚簇索引。

    ps:大家还记得,自增主键和uuid作为主键的区别么?由于主键使用了聚簇索引,如果主键是自增id,,那么对应的数据一定也是相邻地存放在磁盘上的,写入性能比较高。如果是uuid的形式,频繁的插入会使innodb频繁地移动磁盘块,写入性能就比较低了。

    索引原理介绍

    先来一张带主键的表,如下所示,pId是主键

    pId name birthday
    5 zhangsan 2016-10-02
    8 lisi 2015-10-04
    11 wangwu 2016-09-02
    13 zhaoliu 2015-10-07

    画出该表的结构图如下

    如上图所示,分为上下两个部分,上半部分是由主键形成的B+树,下半部分就是磁盘上真实的数据!那么,当我们, 执行下面的语句

    select * from table where pId='11'

    那么,执行过程如下


    如上图所示,从根开始,经过3次查找,就可以找到真实数据。如果不使用索引,那就要在磁盘上,进行逐行扫描,直到找到数据位置。显然,使用索引速度会快。但是在写入数据的时候,需要维护这颗B+树的结构,因此写入性能会下降!

    OK,接下来引入非聚簇索引!我们执行下面的语句

    create index index_name on table(name);

    此时结构图如下所示


    大家注意看,会根据你的索引字段生成一颗新的B+树。因此, 我们每加一个索引,就会增加表的体积, 占用磁盘存储空间。然而,注意看叶子节点,非聚簇索引的叶子节点并不是真实数据,它的叶子节点依然是索引节点,存放的是该索引字段的值以及对应的主键索引(聚簇索引)。

    如果我们执行下列语句

    select * from table where name='lisi'

    此时结构图如下所示


    通过上图红线可以看出,先从非聚簇索引树开始查找,然后找到聚簇索引后。根据聚簇索引,在聚簇索引的B+树上,找到完整的数据!

    什么情况不去聚簇索引树上查询呢?

    还记得我们的非聚簇索引树上存着该索引字段的值么。如果,此时我们执行下面的语句

    select name from table where name='lisi'

    此时结构图如下


    如上图红线所示,如果在非聚簇索引树上找到了想要的值,就不会去聚簇索引树上查询。还记得,博主在《select的正确姿势》提到的索引问题么:

    当执行select col from table where col = ?,col上有索引的时候,效率比执行select * from table where col = ? 速度快好几倍!

    看完上面的图,你应该对这句话有更深层的理解了。

    那么这个时候,我们执行了下述语句,又会发生什么呢?

    create index index_birthday on table(birthday);

    此时结构图如下


    看到了么,多加一个索引,就会多生成一颗非聚簇索引树。因此,很多文章才说,索引不能乱加。因为,有几个索引,就有几颗非聚簇索引树!你在做插入操作的时候,需要同时维护这几颗树的变化!因此,如果索引太多,插入性能就会下降!

    总结

    讲到这里,大家应该清楚的明白索引的原理了!可能细节方面还不够严谨,但是我觉得一个研发,理解到这里可以了,够用了,毕竟我们也不是专业的DBA。
    希望大家有所收获!

    您可能感兴趣的文章:
    • MySQL学习(七):Innodb存储引擎索引的实现原理详解
    • Mysql InnoDB引擎的索引与存储结构详解
    • MySQL InnoDB 二级索引的排序示例详解
    • 探究MySQL中索引和提交频率对InnoDB表写入速度的影响
    • 详解MySQL InnoDB的索引扩展
    上一篇:解压版MYSQL安装及遇到的错误及解决方法
    下一篇:mysql全文模糊搜索MATCH AGAINST方法示例
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    深入讲解MySQL Innodb索引的原理 深入,讲解,MySQL,Innodb,索引,