本文实例讲述了MySQL多表查询。分享给大家供大家参考,具体如下:
准备工作:准备两张表,部门表(department)、员工表(employee)
create table department(
id int,
name varchar(20)
);
create table employee(
id int primary key auto_increment,
name varchar(20),
sex enum('male','female') not null default 'male',
age int,
dep_id int
);
#插入数据
insert into department values
(200,'技术'),
(201,'人力资源'),
(202,'销售'),
(203,'运营');
insert into employee(name,sex,age,dep_id) values
('egon','male',18,200),
('alex','female',48,201),
('wupeiqi','male',38,201),
('yuanhao','female',28,202),
('nvshen','male',18,200),
('xiaomage','female',18,204)
;
# 查看表结构和数据
mysql> desc department;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.19 sec)
mysql> desc employee;
+--------+-----------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+-----------------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(20) | YES | | NULL | |
| sex | enum('male','female') | NO | | male | |
| age | int(11) | YES | | NULL | |
| dep_id | int(11) | YES | | NULL | |
+--------+-----------------------+------+-----+---------+----------------+
5 rows in set (0.01 sec)
mysql> select * from department;
+------+--------------+
| id | name |
+------+--------------+
| 200 | 技术 |
| 201 | 人力资源 |
| 202 | 销售 |
| 203 | 运营 |
+------+--------------+
4 rows in set (0.02 sec)
mysql> select * from employee;
+----+----------+--------+------+--------+
| id | name | sex | age | dep_id |
+----+----------+--------+------+--------+
| 1 | egon | male | 18 | 200 |
| 2 | alex | female | 48 | 201 |
| 3 | wupeiqi | male | 38 | 201 |
| 4 | yuanhao | female | 28 | 202 |
| 5 | nvshen | male | 18 | 200 |
| 6 | xiaomage | female | 18 | 204 |
+----+----------+--------+------+--------+
6 rows in set (0.00 sec)
ps:观察两张表,发现department表中id=203部门在employee中没有对应的员工,发现employee中id=6的员工在department表中没有对应关系。
一多表链接查询
SELECT 字段列表
FROM 表1 INNER|LEFT|RIGHT JOIN 表2
ON 表1.字段 = 表2.字段;
(1)先看第一种情况交叉连接:不适用任何匹配条件。生成笛卡尔积.--->重复最多
mysql> select * from employee,department;
+----+----------+--------+------+--------+------+--------------+
| id | name | sex | age | dep_id | id | name |
+----+----------+--------+------+--------+------+--------------+
| 1 | egon | male | 18 | 200 | 200 | 技术 |
| 1 | egon | male | 18 | 200 | 201 | 人力资源 |
| 1 | egon | male | 18 | 200 | 202 | 销售 |
| 1 | egon | male | 18 | 200 | 203 | 运营 |
| 2 | alex | female | 48 | 201 | 200 | 技术 |
| 2 | alex | female | 48 | 201 | 201 | 人力资源 |
| 2 | alex | female | 48 | 201 | 202 | 销售 |
| 2 | alex | female | 48 | 201 | 203 | 运营 |
| 3 | wupeiqi | male | 38 | 201 | 200 | 技术 |
| 3 | wupeiqi | male | 38 | 201 | 201 | 人力资源 |
| 3 | wupeiqi | male | 38 | 201 | 202 | 销售 |
| 3 | wupeiqi | male | 38 | 201 | 203 | 运营 |
| 4 | yuanhao | female | 28 | 202 | 200 | 技术 |
| 4 | yuanhao | female | 28 | 202 | 201 | 人力资源 |
| 4 | yuanhao | female | 28 | 202 | 202 | 销售 |
| 4 | yuanhao | female | 28 | 202 | 203 | 运营 |
| 5 | nvshen | male | 18 | 200 | 200 | 技术 |
| 5 | nvshen | male | 18 | 200 | 201 | 人力资源 |
| 5 | nvshen | male | 18 | 200 | 202 | 销售 |
| 5 | nvshen | male | 18 | 200 | 203 | 运营 |
| 6 | xiaomage | female | 18 | 204 | 200 | 技术 |
| 6 | xiaomage | female | 18 | 204 | 201 | 人力资源 |
| 6 | xiaomage | female | 18 | 204 | 202 | 销售 |
| 6 | xiaomage | female | 18 | 204 | 203 | 运营 |
(2)内连接:只连接匹配的行,以双方为基准
#找两张表共有的部分,相当于利用条件从笛卡尔积结果中筛选出了匹配的结果
#department没有204这个部门,因而employee表中关于204这条员工信息没有匹配出来
mysql> select employee.id,employee.name,employee.age,employee.sex,department.name from employee inner join department on employee.dep_id=department.id;
+----+---------+------+--------+--------------+
| id | name | age | sex | name |
+----+---------+------+--------+--------------+
| 1 | egon | 18 | male | 技术 |
| 2 | alex | 48 | female | 人力资源 |
| 3 | wupeiqi | 38 | male | 人力资源 |
| 4 | yuanhao | 28 | female | 销售 |
| 5 | nvshen | 18 | male | 技术 |
+----+---------+------+--------+--------------+
5 rows in set (0.00 sec)
#上述sql等同于
mysql> select employee.id,employee.name,employee.age,employee.sex,department.name from employee,department where employee.dep_id=department.id;
(3)外链接之左连接:优先显示左表全部记录
#以左表为准,即找出所有员工信息,当然包括没有部门的员工
#本质就是:在内连接的基础上增加左边有,右边没有的结果
mysql> select employee.id,employee.name,department.name as depart_name from employee left join department on employee.dep_id=department.id;
+----+----------+--------------+
| id | name | depart_name |
+----+----------+--------------+
| 1 | egon | 技术 |
| 5 | nvshen | 技术 |
| 2 | alex | 人力资源 |
| 3 | wupeiqi | 人力资源 |
| 4 | yuanhao | 销售 |
| 6 | xiaomage | NULL |
+----+----------+--------------+
6 rows in set (0.00 sec)
(4) 外链接之右连接:优先显示右表全部记录
#以右表为准,即找出所有部门信息,包括没有员工的部门
#本质就是:在内连接的基础上增加右边有,左边没有的结果
mysql> select employee.id,employee.name,department.name as depart_name from employee right join department on employee.dep_id=department.id;
+------+---------+--------------+
| id | name | depart_name |
+------+---------+--------------+
| 1 | egon | 技术 |
| 2 | alex | 人力资源 |
| 3 | wupeiqi | 人力资源 |
| 4 | yuanhao | 销售 |
| 5 | nvshen | 技术 |
| NULL | NULL | 运营 |
+------+---------+--------------+
6 rows in set (0.00 sec)
(5) 全外连接:显示左右两个表全部记录(了解)
#外连接:在内连接的基础上增加左边有右边没有的和右边有左边没有的结果
#注意:mysql不支持全外连接 full JOIN
#强调:mysql可以使用此种方式间接实现全外连接
语法:select * from employee left join department on employee.dep_id = department.id
union all
select * from employee right join department on employee.dep_id = department.id;
mysql> select * from employee left join department on employee.dep_id = department.id
union
select * from employee right join department on employee.dep_id = department.id
;
+------+----------+--------+------+--------+------+--------------+
| id | name | sex | age | dep_id | id | name |
+------+----------+--------+------+--------+------+--------------+
| 1 | egon | male | 18 | 200 | 200 | 技术 |
| 5 | nvshen | male | 18 | 200 | 200 | 技术 |
| 2 | alex | female | 48 | 201 | 201 | 人力资源 |
| 3 | wupeiqi | male | 38 | 201 | 201 | 人力资源 |
| 4 | yuanhao | female | 28 | 202 | 202 | 销售 |
| 6 | xiaomage | female | 18 | 204 | NULL | NULL |
| NULL | NULL | NULL | NULL | NULL | 203 | 运营 |
+------+----------+--------+------+--------+------+--------------+
7 rows in set (0.01 sec)
#注意 union与union all的区别:union会去掉相同的纪录
二、符合条件连接查询
以内连接的方式查询employee和department表,并且employee表中的age字段值必须大于25,即找出年龄大于25岁的员工以及员工所在的部门
select employee.name,department.name from employee inner join department
on employee.dep_id = department.id
where age > 25;
三、子查询
#1:子查询是将一个查询语句嵌套在另一个查询语句中。
#2:内层查询语句的查询结果,可以为外层查询语句提供查询条件。
#3:子查询中可以包含:IN、NOT IN、ANY、ALL、EXISTS 和 NOT EXISTS等关键字
#4:还可以包含比较运算符:= 、 !=、> 、等
(1)带in关键字的子查询
#查询平均年龄在25岁以上的部门名
select id,name from department
where id in
(select dep_id from employee group by dep_id having avg(age) > 25);
# 查看技术部员工姓名
select name from employee
where dep_id in
(select id from department where name='技术');
#查看不足1人的部门名
select name from department
where id not in
(select dep_id from employee group by dep_id);
(2)带比较运算符的子查询
#比较运算符:=、!=、>、>=、、=、>
#查询大于所有人平均年龄的员工名与年龄
mysql> select name,age from employee where age > (select avg(age) from employee);
+---------+------+
| name | age |
+---------+------+
| alex | 48 |
| wupeiqi | 38 |
+---------+------+
#查询大于部门内平均年龄的员工名、年龄
思路:
(1)先对员工表(employee)中的人员分组(group by),查询出dep_id以及平均年龄。
(2)将查出的结果作为临时表,再对根据临时表的dep_id和employee的dep_id作为筛选条件将employee表和临时表进行内连接。
(3)最后再将employee员工的年龄是大于平均年龄的员工名字和年龄筛选。
mysql> select t1.name,t1.age from employee as t1
inner join
(select dep_id,avg(age) as avg_age from employee group by dep_id) as t2
on t1.dep_id = t2.dep_id
where t1.age > t2.avg_age;
+------+------+
| name | age |
+------+------+
| alex | 48 |
(3)带EXISTS关键字的子查询
#EXISTS关字键字表示存在。在使用EXISTS关键字时,内层查询语句不返回查询的记录。而是返回一个真假值。True或False
#当返回True时,外层查询语句将进行查询;当返回值为False时,外层查询语句不进行查询
#department表中存在dept_id=203,Ture
mysql> select * from employee where exists (select id from department where id=200);
+----+----------+--------+------+--------+
| id | name | sex | age | dep_id |
+----+----------+--------+------+--------+
| 1 | egon | male | 18 | 200 |
| 2 | alex | female | 48 | 201 |
| 3 | wupeiqi | male | 38 | 201 |
| 4 | yuanhao | female | 28 | 202 |
| 5 | nvshen | male | 18 | 200 |
| 6 | xiaomage | female | 18 | 204 |
+----+----------+--------+------+--------+
#department表中存在dept_id=205,False
mysql> select * from employee where exists (select id from department where id=204);
Empty set (0.00 sec)
更多关于MySQL相关内容感兴趣的读者可查看本站专题:《MySQL查询技巧大全》、《MySQL常用函数大汇总》、《MySQL日志操作技巧大全》、《MySQL事务操作技巧汇总》、《MySQL存储过程技巧大全》及《MySQL数据库锁相关技巧汇总》
希望本文所述对大家MySQL数据库计有所帮助。
您可能感兴趣的文章:- IDEA链接MySQL报错08001和连接成功后不显示表的问题及解决方法
- mysql安装navicat之后,出现2059,Authentication plugin及本地链接虚拟机docker,远程链接服务器
- python pymysql链接数据库查询结果转为Dataframe实例
- 实例操作MySQL短链接
- MySql 8.0.11 安装过程及 Navicat 链接时遇到的问题小结
- 详解MySQL分组链接的使用技巧
- MySql使用skip-name-resolve解决外网链接客户端过慢问题
- 利用ssh tunnel链接mysql服务器的方法
- MySQL 查看链接及杀掉异常链接的方法