• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    golang 定时任务方面time.Sleep和time.Tick的优劣对比分析

    golang 写循环执行的定时任务,常见的有以下三种实现方式

    1、time.Sleep方法:

    for {
       time.Sleep(time.Second)
       fmt.Println("我在定时执行任务")
    }
    

    2、time.Tick函数:

    t1:=time.Tick(3*time.Second)
    for {
       select {
       case -t1:
          fmt.Println("t1定时器")
       }
    }
    

    3、其中Tick定时任务

    也可以先使用time.Ticker函数获取Ticker结构体,然后进行阻塞监听信息,这种方式可以手动选择停止定时任务,在停止任务时,减少对内存的浪费。

    t:=time.NewTicker(time.Second)
    for {
       select {
       case -t.C:
          fmt.Println("t1定时器")
          t.Stop()
       }
    }
    

    其中第二种和第三种可以归为同一类

    这三种定时器的实现原理

    一般来说,你在使用执行定时任务的时候,一般旁人会劝你不要使用time.Sleep完成定时任务,但是为什么不能使用Sleep函数完成定时任务呢,它和Tick函数比,有什么劣势呢?这就需要我们去探讨阅读一下源码,分析一下它们之间的优劣性。

    首先,我们研究一下Tick函数,func Tick(d Duration) -chan Time

    调用Tick函数会返回一个时间类型的channel,如果对channel稍微有些了解的话,我们首先会想到,既然是返回一个channel,在调用Tick方法的过程中,必然创建了goroutine,该Goroutine负责发送数据,唤醒被阻塞的定时任务。我在阅读源码之后,确实发现函数中go出去了一个协程,处理定时任务。

    按照当前的理解,使用一个tick,需要go出去一个协程,效率和对内存空间的占用肯定不能比sleep函数强。我们需要继续阅读源码才拿获取到真理。

    简单的调用过程我就不陈述了,我在这介绍一下核心结构体和方法(删除了部分判断代码,解释我写在表格中):

    func (tb *timersBucket) addtimerLocked(t *timer) {
       t.i = len(tb.t)  //计算timersBucket中,当前定时任务的长度
       tb.t = append(tb.t, t)// 将当前定时任务加入timersBucket
       siftupTimer(tb.t, t.i)  //维护一个timer结构体的最小堆(四叉树),排序关键字为执行时间,即该定时任务下一次执行的时间
       if !tb.created {
          tb.created = true
          go timerproc(tb)// 如果还没有创建过管理定时任务的协程,则创建一个,执行通知管理timer的协程,最核心代码
       }
    }
    

    timersBucket,顾名思义,时间任务桶,是外界不可见的全局变量。每当有新的timer定时器任务时,会将timer加入到timersBucket中的timer切片。timerBucket结构体如下:

    type timersBucket struct {
       lock         mutex //添加新定时任务时需要加锁(冲突点在于维护堆)
       t            []*timer //timer切片,构造方式为四叉树最小堆
    }
    

    func timerproc(tb *timersBucket) 详细介绍

    可以称之为定时任务处理器,所有的定时任务都会加入timersBucket,然后在该函数中等待被处理。

    等待被处理的timer,根据when字段(任务执行的时间,int类型,纳秒级别)构成一个最小堆,每次处理完成堆顶的某个timer时,会给它的when字段加上定时任务循环间隔时间(即Tick(d Duration) 中的d参数),然后重新维护堆,保证when最小的timer在堆顶。当堆中没有可以处理的timer(有timer,但是还不到执行时间),需要计算当前时间和堆顶中timer的任务执行时间差值delta,定时任务处理器沉睡delta段时间,等待被调度器唤醒。

    核心代码如下(注释写在每行代码的后面,删除一些判断代码以及不利于阅读的非核心代码):

    func timerproc(tb *timersBucket) {
       for {
          lock(tb.lock) //加锁
          now := nanotime()  //当前时间的纳秒值
          delta := int64(-1)  //最近要执行的timer和当前时间的差值
          for {
             if len(tb.t) == 0 {
                delta = -1
                break
             }//当前无可执行timer,直接跳出该循环
             t := tb.t[0]
             delta = t.when - now //取when组小的的timer,计算于当前时间的差值
             if delta > 0 {
                break
             }// delta大于0,说明还未到发送channel时间,需要跳出循环去睡眠delta时间
             if t.period > 0 {
                // leave in heap but adjust next time to fire
                t.when += t.period * (1 + -delta/t.period)// 计算该timer下次执行任务的时间
                siftdownTimer(tb.t, 0) //调整堆
             } else {
                // remove from heap,如果没有设定下次执行时间,则将该timer从堆中移除(time.after和time.sleep函数即是只执行一次定时任务)
                last := len(tb.t) - 1
                if last > 0 {
                   tb.t[0] = tb.t[last]
                   tb.t[0].i = 0
                }
                tb.t[last] = nil
                tb.t = tb.t[:last]
                if last > 0 {
                   siftdownTimer(tb.t, 0)
                }
                t.i = -1 // mark as removed
             }
             f := t.f
             arg := t.arg
             seq := t.seq
             unlock(tb.lock)//解锁
             f(arg, seq) //在channel中发送time结构体,唤醒阻塞的协程
             lock(tb.lock)
          }
          if delta  0  {
             // No timers left - put goroutine to sleep.
             goparkunlock(tb.lock, "timer goroutine (idle)", traceEvGoBlock, 1)
             continue
          }// delta小于0说明当前无定时任务,直接进行阻塞进行睡眠
          tb.sleeping = true
          tb.sleepUntil = now + delta
          unlock(tb.lock)
          notetsleepg(tb.waitnote, delta)  //睡眠delta时间,唤醒之后就可以执行在堆顶的定时任务了
       }
    }
    

    至此,time.Tick函数涉及到的主要功能就讲解结束了,总结一下就是启动定时任务时,会创建一个唯一协程,处理timer,所有的timer都在该协程中处理。

    然后,我们再阅读一下sleep的源码实现,核心源码如下:

    //go:linkname timeSleep time.Sleep
    func timeSleep(ns int64) {
       *t = timer{} //创建一个定时任务
       t.when = nanotime() + ns //计算定时任务的执行时间点
       t.f = goroutineReady //执行方法
       tb.addtimerLocked(t)  //加入timer堆,并在timer定时任务执行协程中等待被执行
       goparkunlock(tb.lock, "sleep", traceEvGoSleep, 2) //睡眠,等待定时任务协程通知唤醒
    }
    

    读了sleep的核心代码之后,是不是突然发现和Tick函数的内容很类似,都创建了timer,并加入了定时任务处理协程。神奇之处就在于,实际上这两个函数产生的timer都放入了同一个timer堆,都在定时任务处理协程中等待被处理。

    优劣性对比,使用建议

    现在我们知道了,Tick,Sleep,包括time.After函数,都使用的timer结构体,都会被放在同一个协程中统一处理,这样看起来使用Tick,Sleep并没有什么区别。

    实际上是有区别的,Sleep是使用睡眠完成定时任务,需要被调度唤醒。Tick函数是使用channel阻塞当前协程,完成定时任务的执行。当前并不清楚golang 阻塞和睡眠对资源的消耗会有什么区别,这方面不能给出建议。

    但是使用channel阻塞协程完成定时任务比较灵活,可以结合select设置超时时间以及默认执行方法,而且可以设置timer的主动关闭,以及不需要每次都生成一个timer(这方面节省系统内存,垃圾收回也需要时间)。

    所以,建议使用time.Tick完成定时任务。

    补充:Golang 定时器timer和ticker

    两种类型的定时器:ticker和timer。两者有什么区别呢?请看如下代码:

    ticker

    package main
    import (
            "fmt"
            "time"
    )
    func main() {
            d := time.Duration(time.Second*2)
            t := time.NewTicker(d)
            defer t.Stop()
            for {
                    - t.C
                    fmt.Println("timeout...")
            }
    }
    

    output:

    timeout…

    timeout…

    timeout…

    解析

    ticker只要定义完成,从此刻开始计时,不需要任何其他的操作,每隔固定时间都会触发。

    timer

    package main
    import (
            "fmt"
            "time"
    )
    func main() {
            d := time.Duration(time.Second*2)
            t := time.NewTimer(d)
            defer t.Stop()
            for {
                    - t.C
                    fmt.Println("timeout...")
      // need reset
      t.Reset(time.Second*2)
            }
    }
    

    output:

    timeout…

    timeout…

    timeout…

    解析

    使用timer定时器,超时后需要重置,才能继续触发。

    ticker 例子展示

    package main
    import (
            "fmt"
            "time"
    )
    func main() {
            t := time.NewTicker(3*time.Second)
            defer t.Stop()
            fmt.Println(time.Now())
            time.Sleep(4*time.Second)
            for {
                    select {
                    case -t.C:
                            fmt.Println(time.Now())
                    }
            }
    }
    

    output:

    2018-04-02 19:08:22.2797 +0800 CST

    2018-04-02 19:08:26.3087 +0800 CST

    2018-04-02 19:08:28.2797 +0800 CST

    2018-04-02 19:08:31.2797 +0800 CST

    2018-04-02 19:08:34.2797 +0800 CST

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • 解决Golang time.Parse和time.Format的时区问题
    • 解决golang时间字符串转time.Time的坑
    • golang的时区和神奇的time.Parse的使用方法
    • 对Golang中的runtime.Caller使用说明
    • Golang中的time.Duration类型用法说明
    • golang time包做时间转换操作
    • golang xorm及time.Time自定义解决json日期格式的问题
    • golang time常用方法详解
    上一篇:golang日志包logger的用法详解
    下一篇:浅谈golang 中time.After释放的问题
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    golang 定时任务方面time.Sleep和time.Tick的优劣对比分析 golang,定时,任务,方面,time.Sleep,