• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python实现曲线拟合的最小二乘法

    本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下

    模块导入

    import numpy as np
    import gaosi as gs

    代码

    """
    本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。
    
    """
    import numpy as np
    import gaosi as gs
    
    shape = int(input('请输入拟合函数的次数:'))
    
    x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44])
    y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2])
    data = []
    for i in range(shape*2+1):
     if i != 0:
     data.append(np.sum(x**i))
     else:
     data.append(len(x))
    b = []
    for i in range(shape+1):
     if i != 0:
     b.append(np.sum(y*x**i))
     else:
     b.append(np.sum(y))
    b = np.array(b).reshape(shape+1,1)
    n = np.zeros([shape+1,shape+1])
    for i in range(shape+1):
     for j in range(shape+1):
     n[i][j] = data[i+j]
    result = gs.Handle(n,b)
    if not result:
     print('增广矩阵求解失败!')
     exit()
    fun='f(x) = '
    for i in range(len(result)):
     if type(result[i]) == type(''):
     print('存在自由变量!')
     fun = fun + str(result[i])
     elif i == 0:
     fun = fun + '{:.3f}'.format(result[i])
     else:
     fun = fun + '+{0:.3f}*x^{1}'.format(result[i],i)
    print('求得{0}次拟合函数为:'.format(shape))
    print(fun)

    高斯模块

    # 导入 numpy 模块
    import numpy as np
    
    
    # 行交换
    def swap_row(matrix, i, j):
     m, n = matrix.shape
     if i >= m or j >= m:
     print('错误! : 行交换超出范围 ...')
     else:
     matrix[i],matrix[j] = matrix[j].copy(),matrix[i].copy()
     return matrix
    
    
    # 变成阶梯矩阵
    def matrix_change(matrix):
     m, n = matrix.shape
     main_factor = []
     main_col = main_row = 0
     while main_row  m and main_col  n:
     # 选择进行下一次主元查找的列
     main_row = len(main_factor)
     # 寻找列中非零的元素
     not_zeros = np.where(abs(matrix[main_row:,main_col]) > 0)[0]
     # 如果该列向下全部数据为零,则直接跳过列
     if len(not_zeros) == 0:
     main_col += 1
     continue
     else:
     # 将主元列号保存在列表中
     main_factor.append(main_col)
     # 将第一个非零行交换至最前
     if not_zeros[0] != [0]:
     matrix = swap_row(matrix,main_row,main_row+not_zeros[0])
     # 将该列主元下方所有元素变为零
     if main_row  m-1:
     for k in range(main_row+1,m):
     a = float(matrix[k, main_col] / matrix[main_row, main_col])
     matrix[k] = matrix[k] - matrix[main_row] * matrix[k, main_col] / matrix[main_row, main_col]
     main_col += 1
     return matrix,main_factor
    
    
    # 回代求解
    def back_solve(matrix, main_factor):
     # 判断是否有解
     if len(main_factor) == 0:
     print('主元错误,无主元! ...')
     return None
     m, n = matrix.shape
     if main_factor[-1] == n - 1:
     print('无解! ...')
     return None
     # 把所有的主元元素上方的元素变成0
     for i in range(len(main_factor) - 1, -1, -1):
     factor = matrix[i, main_factor[i]]
     matrix[i] = matrix[i] / float(factor)
     for j in range(i):
     times = matrix[j, main_factor[i]]
     matrix[j] = matrix[j] - float(times) * matrix[i]
     # 先看看结果对不对
     return matrix
    
    
    # 结果打印
    def print_result(matrix, main_factor):
     if matrix is None:
     print('阶梯矩阵为空! ...')
     return None
     m, n = matrix.shape
     result = [''] * (n - 1)
     main_factor = list(main_factor)
     for i in range(n - 1):
     # 如果不是主元列,则为自由变量
     if i not in main_factor:
     result[i] = '(free var)'
     # 否则是主元变量,从对应的行,将主元变量表示成非主元变量的线性组合
     else:
     # row_of_main表示该主元所在的行
     row_of_main = main_factor.index(i)
     result[i] = matrix[row_of_main, -1]
     return result
    
    
    # 得到简化的阶梯矩阵和主元列
    def Handle(matrix_a, matrix_b):
     # 拼接成增广矩阵
     matrix_01 = np.hstack([matrix_a, matrix_b])
     matrix_01, main_factor = matrix_change(matrix_01)
     matrix_01 = back_solve(matrix_01, main_factor)
     result = print_result(matrix_01, main_factor)
     return result
    
    
    if __name__ == '__main__':
     a = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float)
     b = np.array([[4],[6],[5]],dtype=float)
     a = Handle(a, b)

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • python中最小二乘法详细讲解
    • 最小二乘法及其python实现详解
    • python实现最小二乘法线性拟合
    • Python最小二乘法矩阵
    • Python 普通最小二乘法(OLS)进行多项式拟合的方法
    • Python基于最小二乘法实现曲线拟合示例
    • Python中实现最小二乘法思路及实现代码
    • python中matplotlib实现最小二乘法拟合的过程详解
    • 利用Python实现最小二乘法与梯度下降算法
    上一篇:python爬虫beautifulsoup库使用操作教程全解(python爬虫基础入门)
    下一篇:python UIAutomator2使用超详细教程
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python实现曲线拟合的最小二乘法 Python,实现,曲线,拟合,的,