目录
- 1 Series
- 1.1创造一个serise数据
- 1.2 指定index
- 1.3 用dictionary构造一个series
- 1.4 用numpy ndarray构造一个Series
- 1.5 选择数据
- 1.6 操作数据
- 1.7 查找
- 1.8 Series赋值
- 1.9 满足条件的统一赋值
1 Series
线性的数据结构, series是一个一维数组
Pandas 会默然用0到n-1来作为series的index, 但也可以自己指定index( 可以把index理解为dict里面的key )
1.1创造一个serise数据
import pandas as pd
import numpy as np
s = pd.Series([9, 'zheng', 'beijing', 128])
print(s)
打印
0 9
1 zheng
2 beijing
3 128
dtype: object
访问其中某个数据
print(s[1:2])
# 打印
1 zheng
dtype: object
Series类型的基本操作:
Series类型包括index和values两部分
In [14]: a = pd.Series({'a':1,'b':5})
In [15]: a.index
Out[15]: Index(['a', 'b'], dtype='object')
In [16]: a.values #返回一个多维数组numpy对象
Out[16]: array([1, 5], dtype=int64)
Series类型的操作类似ndarray类型
#自动索引和自定义索引并存,但不能混用
In [17]: a[0] #自动索引
Out[17]: 1
#自定义索引
In [18]: a['a']
Out[18]: 1
#不能混用
In [20]: a[['a',1]]
Out[20]:
a 1.0
1 NaN
dtype: float64
Series类型的操作类似Python字典类型
#通过自定义索引访问
#对索引保留字in操作,值不可以
In [21]: 'a' in a
Out[21]: True
In [22]: 1 in a
Out[22]: False
Series类型在运算中会自动对齐不同索引的数据
In [29]: a = pd.Series([1,3,5],index = ['a','b','c'])
In [30]: b = pd.Series([2,4,5,6],index = ['c,','d','e','b'])
In [31]: a+b
Out[31]:
a NaN
b 9.0
c NaN
c, NaN
d NaN
e NaN
dtype: float64
Series对象可以随时修改并即刻生效
In [32]: a.index = ['c','d','e']
In [33]: a
Out[33]:
c 1
d 3
e 5
dtype: int64
In [34]: a+b
Out[34]:
b NaN
c NaN
c, NaN
d 7.0
e 10.0
dtype: float64
1.2 指定index
import pandas as pd
import numpy as np
s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])
print(s)
打印
1 9
2 zheng
3 beijing
e 128
f usa
g 990
dtype: object
根据索引找出值
1.3 用dictionary构造一个series
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "car": None}
sa = pd.Series(s, name="age")
print(sa)
打印
car NaN
jack 19.0
mary 18.0
ton 20.0
Name: age, dtype: float64
检测类型
print(type(sa)) # class 'pandas.core.series.Series'>
1.4 用numpy ndarray构造一个Series
生成一个随机数
import pandas as pd
import numpy as np
num_abc = pd.Series(np.random.randn(5), index=list('abcde'))
num = pd.Series(np.random.randn(5))
print(num)
print(num_abc)
# 打印
0 -0.102860
1 -1.138242
2 1.408063
3 -0.893559
4 1.378845
dtype: float64
a -0.658398
b 1.568236
c 0.535451
d 0.103117
e -1.556231
dtype: float64
1.5 选择数据
import pandas as pd
import numpy as np
s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])
print(s[1:3]) # 选择第1到3个, 包左不包右 zheng beijing
print(s[[1,3]]) # 选择第1个和第3个, zheng 128
print(s[:-1]) # 选择第1个到倒数第1个, 9 zheng beijing 128 usa
1.6 操作数据
import pandas as pd
import numpy as np
s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])
sum = s[1:3] + s[1:3]
sum1 = s[1:4] + s[1:4]
sum2 = s[1:3] + s[1:4]
sum3 = s[:3] + s[1:]
print(sum)
print(sum1)
print(sum2)
print(sum3)
打印
2 zhengzheng
3 beijingbeijing
dtype: object
2 zhengzheng
3 beijingbeijing
e 256
dtype: object
2 zhengzheng
3 beijingbeijing
e NaN
dtype: object
1 NaN
2 zhengzheng
3 beijingbeijing
e NaN
f NaN
g NaN
dtype: object
1.7 查找
是否存在
范围查找
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa[sa>19])
中位数
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa.median()) # 20
判断是否大于中位数
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa>sa.median())
找出大于中位数的数
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa[sa > sa.median()])
中位数
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
more_than_midian = sa>sa.median()
print(more_than_midian)
print('---------------------')
print(sa[more_than_midian])
1.8 Series赋值
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(s)
print('----------------')
sa['ton'] = 99
print(sa)
1.9 满足条件的统一赋值
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(s) # 打印原字典
print('---------------------') # 分割线
sa[sa>19] = 88 # 将所有大于19的同一改为88
print(sa) # 打印更改之后的数据
print('---------------------') # 分割线
print(sa / 2) # 将所有数据除以2
到此这篇关于pandas的Series类型与基本操作详解的文章就介绍到这了,更多相关pandas Series基本操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:- 在python中pandas的series合并方法
- Pandas把dataframe或series转换成list的方法
- python pandas 对series和dataframe的重置索引reindex方法
- pandas中的series数据类型详解
- pandas 对series和dataframe进行排序的实例
- pandas series序列转化为星期几的实例
- python pandas中对Series数据进行轴向连接的实例
- Python3.5 Pandas模块之Series用法实例分析
- 浅谈Pandas Series 和 Numpy array中的相同点
- pandas 数据结构之Series的使用方法
- 浅谈Pandas:Series和DataFrame间的算术元素
- 使用Pandas的Series方法绘制图像教程