• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    pytorch查看网络参数显存占用量等操作

    1.使用torchstat

    pip install torchstat 
    
    from torchstat import stat
    import torchvision.models as models
    model = models.resnet152()
    stat(model, (3, 224, 224))

    关于stat函数的参数,第一个应该是模型,第二个则是输入尺寸,3为通道数。我没有调研该函数的详细参数,也不知道为什么使用的时候并不提示相应的参数。

    2.使用torchsummary

    pip install torchsummary
     
    from torchsummary import summary
    summary(model.cuda(),input_size=(3,32,32),batch_size=-1)

    使用该函数直接对参数进行提示,可以发现直接有显式输入batch_size的地方,我自己的感觉好像该函数更好一些。但是!!!不知道为什么,该函数在我的机器上一直报错!!!

    TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

    Update:经过论坛咨询,报错的原因找到了,只需要把

    pip install torchsummary

    修改为

    pip install torch-summary

    补充:Pytorch查看模型参数并计算模型参数量与可训练参数量

    查看模型参数(以AlexNet为例)

    import torch
    import torch.nn as nn
    import torchvision
    class AlexNet(nn.Module):
        def __init__(self,num_classes=1000):
            super(AlexNet,self).__init__()
            self.feature_extraction = nn.Sequential(
                nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=2,bias=False),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=0),
                nn.Conv2d(in_channels=96,out_channels=192,kernel_size=5,stride=1,padding=2,bias=False),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3,stride=2,padding=0),
                nn.Conv2d(in_channels=192,out_channels=384,kernel_size=3,stride=1,padding=1,bias=False),
                nn.ReLU(inplace=True),
                nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,stride=1,padding=1,bias=False),
                nn.ReLU(inplace=True),
                nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1,bias=False),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=0),
            )
            self.classifier = nn.Sequential(
                nn.Dropout(p=0.5),
                nn.Linear(in_features=256*6*6,out_features=4096),
                nn.ReLU(inplace=True),
                nn.Dropout(p=0.5),
                nn.Linear(in_features=4096, out_features=4096),
                nn.ReLU(inplace=True),
                nn.Linear(in_features=4096, out_features=num_classes),
            )
        def forward(self,x):
            x = self.feature_extraction(x)
            x = x.view(x.size(0),256*6*6)
            x = self.classifier(x)
            return x
    if __name__ =='__main__':
        # model = torchvision.models.AlexNet()
        model = AlexNet()
        
        # 打印模型参数
        #for param in model.parameters():
            #print(param)
        
        #打印模型名称与shape
        for name,parameters in model.named_parameters():
            print(name,':',parameters.size())
    
    feature_extraction.0.weight : torch.Size([96, 3, 11, 11])
    feature_extraction.3.weight : torch.Size([192, 96, 5, 5])
    feature_extraction.6.weight : torch.Size([384, 192, 3, 3])
    feature_extraction.8.weight : torch.Size([256, 384, 3, 3])
    feature_extraction.10.weight : torch.Size([256, 256, 3, 3])
    classifier.1.weight : torch.Size([4096, 9216])
    classifier.1.bias : torch.Size([4096])
    classifier.4.weight : torch.Size([4096, 4096])
    classifier.4.bias : torch.Size([4096])
    classifier.6.weight : torch.Size([1000, 4096])
    classifier.6.bias : torch.Size([1000])
    

    计算参数量与可训练参数量

    def get_parameter_number(model):
        total_num = sum(p.numel() for p in model.parameters())
        trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
        return {'Total': total_num, 'Trainable': trainable_num}

    第三方工具

    from torchstat import stat
    import torchvision.models as models
    model = models.alexnet()
    stat(model, (3, 224, 224))

    from torchvision.models import alexnet
    import torch
    from thop import profile
    model = alexnet()
    input = torch.randn(1, 3, 224, 224)
    flops, params = profile(model, inputs=(input, ))
    print(flops, params)
    

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • pytorch固定BN层参数的操作
    • pytorch 如何自定义卷积核权值参数
    • pytorch交叉熵损失函数的weight参数的使用
    • Pytorch 统计模型参数量的操作 param.numel()
    • pytorch 一行代码查看网络参数总量的实现
    • pytorch 优化器(optim)不同参数组,不同学习率设置的操作
    • pytorch LayerNorm参数的用法及计算过程
    上一篇:Python入门之使用pandas分析excel数据
    下一篇:pytorch 一行代码查看网络参数总量的实现
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    pytorch查看网络参数显存占用量等操作 pytorch,查看,网络,参数,显存,