• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    pytorch loss反向传播出错的解决方案

    今天在使用pytorch进行训练,在运行 loss.backward() 误差反向传播时出错 :

    RuntimeError: grad can be implicitly created only for scalar outputs

    File "train.py", line 143, in train
    loss.backward()
    File "/usr/local/lib/python3.6/dist-packages/torch/tensor.py", line 198, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph)
    File "/usr/local/lib/python3.6/dist-packages/torch/autograd/__init__.py", line 94, in backward
    grad_tensors = _make_grads(tensors, grad_tensors)
    File "/usr/local/lib/python3.6/dist-packages/torch/autograd/__init__.py", line 35, in _make_grads
    raise RuntimeError("grad can be implicitly created only for scalar outputs")
    RuntimeError: grad can be implicitly created only for scalar outputs

    问题分析:

    因为我们在执行 loss.backward() 时没带参数,这与 loss.backward(torch.Tensor(1.0)) 是相同的,参数默认就是一个标量。

    但是由于自己的loss不是一个标量,而是二维的张量,所以就会报错。

    解决办法:

    1. 给 loss.backward() 指定传递给后向的参数维度:

    loss = criterion(pred, targets)
    loss.backward()
    # 改为:
    loss = criterion(pred, targets)
    loss.backward(loss.clone().detach())

    2. 修改loss函数的输出维度

    把张量的输出修改为标量,比如说多多个维度的loss求和或求均值等。此方法对于某些任务不一定适用,可以尝试自己修改。

    criterion = nn.L1Loss(reduction='none')
    # 把参数去掉,改为:
    criterion = nn.L1Loss()

    这里顺便介绍一下pytorch loss函数里面 的reduction 参数

    在新的pytorch版本里,使用reduction 参数取代了旧版本的size_average和reduce参数。

    reduction 参数有三种选择:

    'elementwise_mean':为默认情况,表明对N个样本的loss进行求平均之后返回(相当于reduce=True,size_average=True);

    'sum':指对n个样本的loss求和(相当于reduce=True,size_average=False);

    'none':表示直接返回n分样本的loss(相当于reduce=False)

    补充:在Pytorch下,由于反向传播设置错误导致 loss不下降的原因及解决方案

    在Pytorch下,由于反向传播设置错误导致 loss不下降的原因及解决方案

    刚刚接触深度学习一段时间,一直在研究计算机视觉方面,现在也在尝试实现自己的idea,从中也遇见了一些问题,这次就专门写一下,自己由于在反向传播(backward)过程中参数没有设置好,而导致的loss不下降的原因。

    对于多个网络交替

    描述

    简单描述一下我的网络结构,我的网络是有上下两路,先对第一路网络进行训练,使用groud truth对这一路的结果进行监督loss_steam1,得到训练好的feature.然后再将得到的feature级联到第二路,通过网络得到最后的结果,再用groud truth进行监督loss。

    整个网络基于VGG19网络,在pytorch下搭建,有GPU环境:

    出现的情况,loss_steam1不怎么下降

    这个问题确实折麽自己一段时间,结果发现自己出现了一个问题,下面将对这个问题进行分析和解答:

    PyTorch梯度传递

    在PyTorch中,传入网络计算的数据类型必须是Variable类型, Variable包装了一个Tensor,并且保存着梯度和创建这个Variablefunction的引用,换句话说,就是记录网络每层的梯度和网络图,可以实现梯度的反向传递.
    则根据最后得到的loss可以逐步递归的求其每层的梯度,并实现权重更新。

    在实现梯度反向传递时主要需要三步:

    1、初始化梯度值:net.zero_grad() 清除网络状态

    2、反向求解梯度:loss.backward() 反向传播求梯度

    3、更新参数:optimizer.step() 更新参数

    解决方案

    自己在写代码的时候,还是没有对自己的代码搞明白。在反向求解梯度时,对第一路没有进行反向传播,这样肯定不能使这一路的更新,所以我就又加了一步:

    loss_steam1.backward( retain_graph = True) //因为每次运行一次backward时,如果不加retain_graph = True,运行完后,计算图都会free掉。

    loss.backward()

    这样就够了么?我当时也是这么认为的结果发现loss_steam1还是没有降,又愁了好久,结果发现梯度有了,不更新参数,怎么可能有用!

    optimizer_steam1.step() //这项必须加
    optimizer.step()

    哈哈!这样就完成了,效果也确实比以前好了很多。

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • pytorch 多个反向传播操作
    • pytorch中的自定义反向传播,求导实例
    • pytorch .detach() .detach_() 和 .data用于切断反向传播的实现
    • PyTorch: 梯度下降及反向传播的实例详解
    上一篇:深度解析Django REST Framework 批量操作
    下一篇:pytorch Variable与Tensor合并后 requires_grad()默认与修改方式
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    pytorch loss反向传播出错的解决方案 pytorch,loss,反向,传,播出,