• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    python生成器generator:深度学习读取batch图片的操作

    在深度学习中训练模型的过程中读取图片数据,如果将图片数据全部读入内存是不现实的,所以有必要使用生成器来读取数据。

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    创建generator有多种方法,第一种方法很简单

    只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    generator object genexpr> at 0x1022ef630>

    list中的元素可以直接打印出来 ,generator要一个一个打印出来,

    可以通过next()函数获得generator的下一个返回值:

    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16

    generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    上面这种不断调用next(g)实在是太变态了

    正确的方法是使用for循环,因为generator也是可迭代对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)

    著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来

    但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n  max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n, a, b = 0, 0, 1
        while n  max:
            yield b
            a, b = b, a + b
            n = n + 1
        return 'done'

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    >>> f = fib(6)
    >>> f
    generator object fib at 0x104feaaa0>

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print(n)
    ...

    最后在读取图片的实际应用中的代码如下:

    def train_data(train_file,batch_size,resize_shape):
        datas, labels = read_data(train_file)
        num_batch = len(datas)//batch_size
        for i in range(num_batch):
            imgs = []
            train_datas = datas[batch_size*i:batch_size*(i+1)]
            train_lables = labels[batch_size*i:batch_size*(i+1)]
            for img_path in train_datas:
                img = cv2.imread(img_path)
                img = cv2.resize(img,resize_shape)
                img = img/255 #归一化处理
                imgs.append(img)
            yield np.array(imgs),np.array(train_lables)

    补充:深度学习算法--fit_generator()函数使用

    如果我们数据量很大,那么是不可能将所有数据载入内存的,必将导致内存泄漏,

    这时候我们可以用fit_generator函数来进行训练

    from keras.datasets import imdb
    from keras.preprocessing.sequence import pad_sequences
    from keras.models import Sequential
    from keras import layers
    import numpy as np
    import random
    from sklearn.metrics import f1_score, accuracy_score
    
    max_features = 100
    maxlen = 50
    batch_size = 320
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
    x_train = pad_sequences(x_train, maxlen=maxlen)
    x_test = pad_sequences(x_test, maxlen=maxlen)
    
    def generator():
        while 1:
            row = np.random.randint(0, len(x_train), size=batch_size)
            x = np.zeros((batch_size, x_train.shape[-1]))
            y = np.zeros((batch_size,))
            x = x_train[row]
            y = y_train[row]
            yield x, y
    
    # generator()
    model = Sequential()
    model.add(layers.Embedding(max_features, 32, input_length=maxlen))
    model.add(layers.GRU(64, return_sequences=True))
    model.add(layers.GRU(32))
    # model.add(layers.Flatten())
    # model.add(layers.Dense(32,activation='relu'))
    
    model.add(layers.Dense(1, activation='sigmoid'))
    model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
    print(model.summary())
    
    # history = model.fit(x_train, y_train, epochs=1,batch_size=32, validation_split=0.2)
    # Keras中的fit()函数传入的x_train和y_train是被完整的加载进内存的,当然用起来很方便,但是如果我们数据量很大,
    # 那么是不可能将所有数据载入内存的,必将导致内存泄漏,这时候我们可以用fit_generator函数来进行训练。
    # fit_generator函数必须传入一个生成器,我们的训练数据也是通过生成器产生的
    history = model.fit_generator(generator(), epochs=1, steps_per_epoch=len(x_train) // (batch_size))
    
    print(model.evaluate(x_test, y_test))
    y = model.predict_classes(x_test)
    print(accuracy_score(y_test, y))
    

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • Python对130w+张图片检索的实现方法
    • 利用Python实现简单的相似图片搜索的教程
    • 如何利用Python识别图片中的文字详解
    • Python图片处理之图片裁剪教程
    • Python批量图片去水印的方法
    • python 爬取英雄联盟皮肤图片
    • python opencv通过按键采集图片源码
    • Python如何生成随机高斯模糊图片详解
    • 使用python如何删除同一文件夹下相似的图片
    • Python基于Opencv识别两张相似图片
    • Python图片检索之以图搜图
    上一篇:python判断集合的超集方法及实例
    下一篇:教你用python实现一个无界面的小型图书管理系统
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    python生成器generator:深度学习读取batch图片的操作 python,生,成器,generator,深度,