• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    我对PyTorch dataloader里的shuffle=True的理解

    对shuffle=True的理解:

    之前不了解shuffle的实际效果,假设有数据a,b,c,d,不知道batch_size=2后打乱,具体是如下哪一种情况:

    1.先按顺序取batch,对batch内打乱,即先取a,b,a,b进行打乱;

    2.先打乱,再取batch。

    证明是第二种

    shuffle (bool, optional): set to ``True`` to have the data reshuffled 
    at every epoch (default: ``False``).
    if shuffle:
        sampler = RandomSampler(dataset) #此时得到的是索引

    补充:简单测试一下pytorch dataloader里的shuffle=True是如何工作的

    看代码吧~

    import sys
    import torch
    import random
    import argparse
    import numpy as np
    import pandas as pd
    import torch.nn as nn
    from torch.nn import functional as F
    from torch.optim import lr_scheduler
    from torchvision import datasets, transforms
    from torch.utils.data import TensorDataset, DataLoader, Dataset
     
    class DealDataset(Dataset):
        def __init__(self):
            xy = np.loadtxt(open('./iris.csv','rb'), delimiter=',', dtype=np.float32)
            #data = pd.read_csv("iris.csv",header=None)
            #xy = data.values
            self.x_data = torch.from_numpy(xy[:, 0:-1])
            self.y_data = torch.from_numpy(xy[:, [-1]])
            self.len = xy.shape[0]
        
        def __getitem__(self, index):
            return self.x_data[index], self.y_data[index]
     
        def __len__(self):
            return self.len
       
    dealDataset = DealDataset() 
    train_loader2 = DataLoader(dataset=dealDataset,
                              batch_size=2,
                              shuffle=True)
    #print(dealDataset.x_data)
    for i, data in enumerate(train_loader2):
        inputs, labels = data
     
        #inputs, labels = Variable(inputs), Variable(labels)
        print(inputs)
        #print("epoch:", epoch, "的第" , i, "个inputs", inputs.data.size(), "labels", labels.data.size())

    简易数据集

    shuffle之后的结果,每次都是随机打乱,然后分成大小为n的若干个mini-batch.

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • Pytorch dataloader在加载最后一个batch时卡死的解决
    • pytorch锁死在dataloader(训练时卡死)
    • Pytorch 如何加速Dataloader提升数据读取速度
    • pytorch DataLoader的num_workers参数与设置大小详解
    • Pytorch数据读取之Dataset和DataLoader知识总结
    • pytorch中DataLoader()过程中遇到的一些问题
    上一篇:Python快速优雅的批量修改Word文档样式
    下一篇:Python深度学习之Pytorch初步使用
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    我对PyTorch dataloader里的shuffle=True的理解 我对,PyTorch,dataloader,里的,