• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    TensorFlow的自动求导原理分析

    原理:

    TensorFlow使用的求导方法称为自动微分(Automatic Differentiation),它既不是符号求导也不是数值求导,而类似于将两者结合的产物。

    最基本的原理就是链式法则,关键思想是在基本操作(op)的水平上应用符号求导,并保持中间结果(grad)

    基本操作的符号求导定义在\tensorflow\python\ops\math_grad.py文件中,这个文件中的所有函数都用RegisterGradient装饰器包装了起来,这些函数都接受两个参数op和grad,参数op是操作,第二个参数是grad是之前的梯度。

    链式求导代码:

    举个例子:

    补充:聊聊Tensorflow自动求导机制

    自动求导机制

    在即时执行模式下,Tensorflow引入tf.GradientTape()这个“求导记录器”来实现自动求导。

    计算函数y(x)=x^2在x = 3时的导数:

    import tensorflow as tf
    #定义变量
    x = tf.Variable(initial_value = 3.)
    
    #在tf.GradientTape()的上下文内,所有计算步骤都会被记录以用于求导
    with tf.GradientTape() as tape:
        #y = x^2
        y = tf.square(x)
    #计算y关于x的导数(斜率,梯度)
    y_grad = tape.gradient(y,x)
    print([y,y_grad])
    

    输出:

    [tf.Tensor: shape=(), dtype=float32, numpy=9.0>, tf.Tensor: shape=(), dtype=float32, numpy=6.0>]

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • 使用tensorflow 实现反向传播求导
    • tensorflow中的梯度求解及梯度裁剪操作
    • Tensorflow 如何从checkpoint文件中加载变量名和变量值
    • Python3安装tensorflow及配置过程
    • 解决tensorflow 与keras 混用之坑
    • tensorflow中的数据类型dtype用法说明
    上一篇:Django分页器的用法你都了解吗
    下一篇:python基础学习之递归函数知识总结
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    TensorFlow的自动求导原理分析 TensorFlow,的,自动,求导,原理,