• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    pytorch 如何把图像数据集进行划分成train,test和val

    1、手上目前拥有数据集是一大坨,没有train,test,val的划分

    如图所示


    2、目录结构:

    |---data
         |---dslr
             |---images
             		|---back_pack
             			|---a.jpg
             			|---b.jpg
             			...
    

    3、转换后的格式如图


    目录结构为:

    |---datanews
         |---dslr
             |---images
             		|---test
             		|---train
             		|---valid
    	         		|---back_pack
    	         			|---a.jpg
    	         			|---b.jpg
    	         			...
    

    4、代码如下:

    4.1 先创建同样结构的层级结构

    4.2 然后讲原始数据按照比例划分

    4.3 移入到对应的文件目录里面

    import os, random, shutil
    
    def make_dir(source, target):
        '''
        创建和源文件相似的文件路径函数
        :param source: 源文件位置
        :param target: 目标文件位置
        '''
        dir_names = os.listdir(source)
        for names in dir_names:
            for i in ['train', 'valid', 'test']:
                path = target + '/' + i + '/' + names
                if not os.path.exists(path):
                    os.makedirs(path)
    
    def divideTrainValiTest(source, target):
        '''
            创建和源文件相似的文件路径
            :param source: 源文件位置
            :param target: 目标文件位置
        '''
        # 得到源文件下的种类
        pic_name = os.listdir(source)
        
        # 对于每一类里的数据进行操作
        for classes in pic_name:
            # 得到这一种类的图片的名字
            pic_classes_name = os.listdir(os.path.join(source, classes))
            random.shuffle(pic_classes_name)
            
            # 按照8:1:1比例划分
            train_list = pic_classes_name[0:int(0.8 * len(pic_classes_name))]
            valid_list = pic_classes_name[int(0.8 * len(pic_classes_name)):int(0.9 * len(pic_classes_name))]
            test_list = pic_classes_name[int(0.9 * len(pic_classes_name)):]
            
            # 对于每个图片,移入到对应的文件夹里面
            for train_pic in train_list:
                shutil.copyfile(source + '/' + classes + '/' + train_pic, target + '/train/' + classes + '/' + train_pic)
            for validation_pic in valid_list:
                shutil.copyfile(source + '/' + classes + '/' + validation_pic,
                                target + '/valid/' + classes + '/' + validation_pic)
            for test_pic in test_list:
                shutil.copyfile(source + '/' + classes + '/' + test_pic, target + '/test/' + classes + '/' + test_pic)
    
    if __name__ == '__main__':
        filepath = r'../data/dslr/images'
        dist = r'../datanews/dslr/images'
        make_dir(filepath, dist)
        divideTrainValiTest(filepath, dist)
    

    补充:pytorch中数据集的划分方法及eError: take(): argument 'index' (position 1) must be Tensor, not numpy.ndarray错误原因

    在使用pytorch框架时,难免需要对数据集进行训练集和验证集的划分,一般使用sklearn.model_selection中的train_test_split方法

    该方法使用如下:

    from sklearn.model_selection import train_test_split
    import numpy as np
    import torch
    import torch.autograd import Variable
    from torch.utils.data import DataLoader
     
    traindata = np.load(train_path)   # image_num * W * H
    trainlabel = np.load(train_label_path)
    train_data = traindata[:, np.newaxis, ...]
    train_label_data = trainlabel[:, np.newaxis, ...]
     
    x_tra, x_val, y_tra, y_val = train_test_split(train_data, train_label_data, test_size=0.1, random_state=0)  # 训练集和验证集使用9:1
     
    x_tra = Variable(torch.from_numpy(x_tra))
    x_tra = x_tra.float()
    y_tra = Variable(torch.from_numpy(y_tra))
    y_tra = y_tra.float()
     
    x_val = Variable(torch.from_numpy(x_val))
    x_val = x_val.float()
    y_val = Variable(torch.from_numpy(y_val))
    y_val = y_val.float()
     
    # 训练集的DataLoader
    traindataset = torch.utils.data.TensorDataset(x_tra, y_tra)
    trainloader = DataLoader(dataset=traindataset, num_workers=opt.threads, batch_size=8, shuffle=True)  
     
    # 验证集的DataLoader
    validataset = torch.utils.data.TensorDataset(x_val, y_val)
    valiloader = DataLoader(dataset=validataset, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)

    注意:如果按照如下方式使用,就会报eError: take(): argument 'index' (position 1) must be Tensor, not numpy.ndarray错误

    from sklearn.model_selection import train_test_split
    import numpy as np
    import torch
    import torch.autograd import Variable
    from torch.utils.data import DataLoader
     
    traindata = np.load(train_path)   # image_num * W * H
    trainlabel = np.load(train_label_path)
     
    train_data = traindata[:, np.newaxis, ...]
    train_label_data = trainlabel[:, np.newaxis, ...]
     
    x_train = Variable(torch.from_numpy(train_data))
    x_train = x_train.float()
    y_train = Variable(torch.from_numpy(train_label_data))
    y_train = y_train.float()
    # 将原始的训练数据集分为训练集和验证集,后面就可以使用早停机制
    x_tra, x_val, y_tra, y_val = train_test_split(x_train, y_train, test_size=0.1)  # 训练集和验证集使用9:1

    报错原因:

    train_test_split方法接受的x_train,y_train格式应该为numpy.ndarray 而不应该是Tensor,这点需要注意。

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • 使用PyTorch将文件夹下的图片分为训练集和验证集实例
    • Pytorch 使用CNN图像分类的实现
    • pytorch加载自己的图像数据集实例
    • python中如何实现将数据分成训练集与测试集的方法
    上一篇:Python图片检索之以图搜图
    下一篇:只用40行Python代码就能写出pdf转word小工具
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    pytorch 如何把图像数据集进行划分成train,test和val pytorch,如何,把,图像,数据,