• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    PyTorch训练LSTM时loss.backward()报错的解决方案

    训练用PyTorch编写的LSTM或RNN时,在loss.backward()上报错:

    RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.

    千万别改成loss.backward(retain_graph=True),会导致显卡内存随着训练一直增加直到OOM:

    RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 10.73 GiB total capacity; 9.79 GiB already allocated; 13.62 MiB free; 162.76 MiB cached)

    正确做法:

    LSRM / RNN模块初始化时定义好hidden,每次forward都要加上self.hidden = self.init_hidden():
    Class LSTMClassifier(nn.Module):
        def __init__(self, embedding_dim, hidden_dim):
        # 此次省略其它代码
        self.rnn_cell = nn.LSTM(embedding_dim, hidden_dim)
        self.hidden = self.init_hidden()
        # 此次省略其它代码
        
        def init_hidden(self):
            # 开始时刻, 没有隐状态
            # 关于维度设置的详情,请参考 Pytorch 文档
            # 各个维度的含义是 (Seguence, minibatch_size, hidden_dim)
            return (torch.zeros(1, 1, self.hidden_dim),
                    torch.zeros(1, 1, self.hidden_dim))
        def forward(self, x):
            # 此次省略其它代码
            self.hidden = self.init_hidden()  # 就是加上这句!!!!
            out, self.hidden = self.rnn_cell(x, self.hidden)     
            # 此次省略其它代码
            return out    

    或者其它模块每次调用这个模块时,其它模块的forward()都对这个LSTM模块init_hidden()一下。

    如定义一个模型LSTM_Model():

    Class LSTM_Model(nn.Module):
        def __init__(self, embedding_dim, hidden_dim):
            # 此次省略其它代码
            self.rnn = LSTMClassifier(embedding_dim, hidden_dim)
            # 此次省略其它代码
            
        def forward(self, x):
            # 此次省略其它代码
            self.rnn.hidden = self.rnn.init_hidden()  # 就是加上这句!!!!
            out = self.rnn(x)     
            # 此次省略其它代码
            return out

    这是因为:

    根据 官方tutorial,在 loss 反向传播的时候,pytorch 试图把 hidden state 也反向传播,但是在新的一轮 batch 的时候 hidden state 已经被内存释放了,所以需要每个 batch 重新 init (clean out hidden state), 或者 detach,从而切断反向传播。

    补充:pytorch:在执行loss.backward()时out of memory报错

    在自己编写SurfNet网络的过程中,出现了这个问题,查阅资料后,将得到的解决方法汇总如下

    可试用的方法:

    1、reduce batch size, all the way down to 1

    2、remove everything to CPU leaving only the network on the GPU

    3、remove validation code, and only executing the training code

    4、reduce the size of the network (I reduced it significantly: details below)

    5、I tried scaling the magnitude of the loss that is backpropagating as well to a much smaller value

    在训练时,在每一个step后面加上:

    torch.cuda.empty_cache()

    在每一个验证时的step之后加上代码:

    with torch.no_grad()

    不要在循环训练中累积历史记录

    total_loss = 0
    for i in range(10000):
        optimizer.zero_grad()
        output = model(input)
        loss = criterion(output)
        loss.backward()
        optimizer.step()
        total_loss += loss

    total_loss在循环中进行了累计,因为loss是一个具有autograd历史的可微变量。你可以通过编写total_loss += float(loss)来解决这个问题。

    本人遇到这个问题的原因是,自己构建的模型输入到全连接层中的特征图拉伸为1维向量时太大导致的,加入pool层或者其他方法将最后的卷积层输出的特征图尺寸减小即可。

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • 解决Pytorch训练过程中loss不下降的问题
    • pytorch loss反向传播出错的解决方案
    • Pytorch中accuracy和loss的计算知识点总结
    • 关于pytorch中网络loss传播和参数更新的理解
    上一篇:浅谈pytorch中为什么要用 zero_grad() 将梯度清零
    下一篇:pytorch lstm gru rnn 得到每个state输出的操作
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    PyTorch训练LSTM时loss.backward()报错的解决方案 PyTorch,训练,LSTM,时,loss.backward,