• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    PyTorch一小时掌握之迁移学习篇

    概述

    迁移学习 (Transfer Learning) 是把已学训练好的模型参数用作新训练模型的起始参数. 迁移学习是深度学习中非常重要和常用的一个策略.

    为什么使用迁移学习

    更好的结果

    迁移学习 (Transfer Learning) 可以帮助我们得到更好的结果.

    当我们手上的数据比较少的时候, 训练非常容易造成过拟合的现象. 使用迁移学习可以帮助我们通过更少的训练数据达到更好的效果. 使得模型的泛化能力更强, 训练过程更稳定.

    节省时间

    迁移学习 (Transfer Learning) 可以帮助我们节省时间.

    通过迁徙学习, 我们站在了巨人的肩膀上. 利用前人花大量时间训练好的参数, 能帮助我们在模型的训练上节省大把的时间.

    加载模型

    首先我们需要加载模型, 并指定层数. 常用的模型有:

    官网 API

    ResNet152

    我们将使用 ResNet 152 和 CIFAR 100 来举例.

    冻层实现

    def set_parameter_requires_grad(model, feature_extracting):
        """
        是否保留梯度, 实现冻层
        :param model: 模型
        :param feature_extracting: 是否冻层
        :return: 无返回值
        """
        if feature_extracting:  # 如果冻层
            for param in model.parameters():  # 遍历每个权重参数
                param.requires_grad = False  # 保留梯度为False
    

    模型初始化

    def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
        """
        初始化模型
        :param model_name: 模型名字
        :param num_classes: 类别数
        :param feature_exact: 是否冻层
        :param use_pretrained: 是否下载模型
        :return: 返回模型,
        """
    
        model_ft = None
    
        if model_name == "resnet":
            """Resnet152"""
    
            # 加载模型
            model_ft = models.resnet152(pretrained=use_pretrained)  # 下载参数
            set_parameter_requires_grad(model_ft, feature_exact)  # 冻层
    
            # 修改全连接层
            num_features = model_ft.fc.in_features
            model_ft.fc = torch.nn.Sequential(
                torch.nn.Linear(num_features, num_classes),
                torch.nn.LogSoftmax(dim=1)
            )
    
        # 返回初始化好的模型
        return model_ft
    

    获取需更新参数

    def parameter_to_update(model):
        """
        获取需要更新的参数
        :param model: 模型
        :return: 需要更新的参数列表
        """
    
        print("Params to learn")
        param_array = model.parameters()
    
        if feature_exact:
            param_array = []
            for name, param, in model.named_parameters():
                if param.requires_grad == True:
                    param_array.append(param)
                    print("\t", name)
        else:
            for name, param, in model.named_parameters():
                if param.requires_grad == True:
                    print("\t", name)
    
        return param_array
    

    训练模型

    def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
        # 获取起始时间
        since = time.time()
    
        # 初始化参数
        best_acc = 0
        val_acc_history = []
        train_acc_history = []
        train_losses = []
        valid_losses = []
        LRs = [optimizer.param_groups[0]["lr"]]
        best_model_weights = copy.deepcopy(model.state_dict())
    
        for epoch in range(num_epochs):
            print("Epoch {}/{}".format(epoch, num_epochs - 1))
            print("-" * 10)
    
            # 训练和验证
            for phase in ["train", "valid"]:
                if phase == "train":
                    model.train()  # 训练
                else:
                    model.eval()  # 验证
    
                running_loss = 0.0
                running_corrects = 0
    
                # 遍历数据
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
    
                    # 梯度清零
                    optimizer.zero_grad()
    
                    # 只有训练的时候计算和更新梯度
                    with torch.set_grad_enabled(phase == "train"):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
    
                        # 计算损失
                        loss = criterion(outputs, labels)
    
                        # 训练阶段更新权重
                        if phase == "train":
                            loss.backward()
                            optimizer.step()
    
                    # 计算损失
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)
    
                epoch_loss = running_loss / len(dataloaders[phase].dataset)
                epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
                time_eplased = time.time() - since
                print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
                print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))
    
                # 得到最好的模型
                if phase == "valid" and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_weights = copy.deepcopy(model.state_dict())
                    state = {
                        "state_dict": model.state_dict(),
                        "best_acc": best_acc,
                        "optimizer": optimizer.state_dict(),
                    }
                    torch.save(state, filename)
                if phase == "valid":
                    val_acc_history.append(epoch_acc)
                    valid_losses.append(epoch_loss)
                    scheduler.step(epoch_loss)
                if phase == "train":
                    train_acc_history.append(epoch_acc)
                    train_losses.append(epoch_loss)
    
            print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
            LRs.append(optimizer.param_groups[0]["lr"])
            print()
    
        time_eplased = time.time() - since
        print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
        print("Best val Acc: {:4f}".format(best_acc))
    
        # 训练完后用最好的一次当做模型最终的结果
        model.load_state_dict(best_model_weights)
    
        # 返回
        return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
    

    获取数据

    def get_data():
        """获取数据"""
    
        # 获取测试集
        train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                              transform=torchvision.transforms.Compose([
                                                  torchvision.transforms.ToTensor(),  # 转换成张量
                                                  torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                              ]))
        train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集
    
        # 获取测试集
        test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                             transform=torchvision.transforms.Compose([
                                                 torchvision.transforms.ToTensor(),  # 转换成张量
                                                 torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                             ]))
        test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练
    
        data_loader = {"train": train_loader, "valid": test_loader}
    
        # 返回分割好的训练集和测试集
        return data_loader
    

    完整代码

    完整代码:

    import copy
    import torch
    from torch.utils.data import DataLoader
    import time
    from torchsummary import summary
    import torchvision
    import torchvision.models as models
    
    
    def set_parameter_requires_grad(model, feature_extracting):
        """
        是否保留梯度, 实现冻层
        :param model: 模型
        :param feature_extracting: 是否冻层
        :return: 无返回值
        """
        if feature_extracting:  # 如果冻层
            for param in model.parameters():  # 遍历每个权重参数
                param.requires_grad = False  # 保留梯度为False
    
    
    def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
        """
        初始化模型
        :param model_name: 模型名字
        :param num_classes: 类别数
        :param feature_exact: 是否冻层
        :param use_pretrained: 是否下载模型
        :return: 返回模型,
        """
    
        model_ft = None
    
        if model_name == "resnet":
            """Resnet152"""
    
            # 加载模型
            model_ft = models.resnet152(pretrained=use_pretrained)  # 下载参数
            set_parameter_requires_grad(model_ft, feature_exact)  # 冻层
    
            # 修改全连接层
            num_features = model_ft.fc.in_features
            model_ft.fc = torch.nn.Sequential(
                torch.nn.Linear(num_features, num_classes),
                torch.nn.LogSoftmax(dim=1)
            )
    
        # 返回初始化好的模型
        return model_ft
    
    
    def parameter_to_update(model):
        """
        获取需要更新的参数
        :param model: 模型
        :return: 需要更新的参数列表
        """
    
        print("Params to learn")
        param_array = model.parameters()
    
        if feature_exact:
            param_array = []
            for name, param, in model.named_parameters():
                if param.requires_grad == True:
                    param_array.append(param)
                    print("\t", name)
        else:
            for name, param, in model.named_parameters():
                if param.requires_grad == True:
                    print("\t", name)
    
        return param_array
    
    
    def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
        # 获取起始时间
        since = time.time()
    
        # 初始化参数
        best_acc = 0
        val_acc_history = []
        train_acc_history = []
        train_losses = []
        valid_losses = []
        LRs = [optimizer.param_groups[0]["lr"]]
        best_model_weights = copy.deepcopy(model.state_dict())
    
        for epoch in range(num_epochs):
            print("Epoch {}/{}".format(epoch, num_epochs - 1))
            print("-" * 10)
    
            # 训练和验证
            for phase in ["train", "valid"]:
                if phase == "train":
                    model.train()  # 训练
                else:
                    model.eval()  # 验证
    
                running_loss = 0.0
                running_corrects = 0
    
                # 遍历数据
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
    
                    # 梯度清零
                    optimizer.zero_grad()
    
                    # 只有训练的时候计算和更新梯度
                    with torch.set_grad_enabled(phase == "train"):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
    
                        # 计算损失
                        loss = criterion(outputs, labels)
    
                        # 训练阶段更新权重
                        if phase == "train":
                            loss.backward()
                            optimizer.step()
    
                    # 计算损失
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)
    
                epoch_loss = running_loss / len(dataloaders[phase].dataset)
                epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
                time_eplased = time.time() - since
                print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
                print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))
    
                # 得到最好的模型
                if phase == "valid" and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_weights = copy.deepcopy(model.state_dict())
                    state = {
                        "state_dict": model.state_dict(),
                        "best_acc": best_acc,
                        "optimizer": optimizer.state_dict(),
                    }
                    torch.save(state, filename)
                if phase == "valid":
                    val_acc_history.append(epoch_acc)
                    valid_losses.append(epoch_loss)
                    scheduler.step(epoch_loss)
                if phase == "train":
                    train_acc_history.append(epoch_acc)
                    train_losses.append(epoch_loss)
    
            print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
            LRs.append(optimizer.param_groups[0]["lr"])
            print()
    
        time_eplased = time.time() - since
        print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
        print("Best val Acc: {:4f}".format(best_acc))
    
        # 训练完后用最好的一次当做模型最终的结果
        model.load_state_dict(best_model_weights)
    
        # 返回
        return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
    
    
    def get_data():
        """获取数据"""
    
        # 获取测试集
        train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                              transform=torchvision.transforms.Compose([
                                                  torchvision.transforms.ToTensor(),  # 转换成张量
                                                  torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                              ]))
        train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集
    
        # 获取测试集
        test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                             transform=torchvision.transforms.Compose([
                                                 torchvision.transforms.ToTensor(),  # 转换成张量
                                                 torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                             ]))
        test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练
    
        data_loader = {"train": train_loader, "valid": test_loader}
    
        # 返回分割好的训练集和测试集
        return data_loader
    
    
    # 超参数
    filename = "checkpoint.pth"  # 模型保存
    feature_exact = True  # 冻层
    num_classes = 100  # 输出的类别数
    batch_size = 1024  # 一次训练的样本数目
    iteration_num = 10  # 迭代次数
    
    # 获取模型
    resnet152 = initialize_model(
        model_name="resnet",
        num_classes=num_classes,
        feature_exact=feature_exact,
        use_pretrained=True
    )
    
    # 是否使用GPU训练
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    if use_cuda: resnet152.cuda()  # GPU 计算
    print("是否使用 GPU 加速:", use_cuda)
    
    # 输出网络结构
    print(summary(resnet152, (3, 32, 32)))
    
    # 训练参数
    params_to_update = parameter_to_update(resnet152)
    
    # 优化器
    optimizer = torch.optim.Adam(params_to_update, lr=0.01)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  # 学习率每10个epoch衰减到原来的1/10
    criterion = torch.nn.NLLLoss()
    
    if __name__ == "__main__":
        data_loader = get_data()
        resnet152, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(
            model=resnet152,
            dataloaders=data_loader,
            citerion=criterion,
            optimizer=optimizer,
            num_epochs=iteration_num,
            filename=filename
        )
    

    输出结果:

    是否使用 GPU 加速: True
    ----------------------------------------------------------------
    Layer (type) Output Shape Param #
    ================================================================
    Conv2d-1 [-1, 64, 16, 16] 9,408
    BatchNorm2d-2 [-1, 64, 16, 16] 128
    ReLU-3 [-1, 64, 16, 16] 0
    MaxPool2d-4 [-1, 64, 8, 8] 0
    Conv2d-5 [-1, 64, 8, 8] 4,096
    BatchNorm2d-6 [-1, 64, 8, 8] 128
    ReLU-7 [-1, 64, 8, 8] 0
    Conv2d-8 [-1, 64, 8, 8] 36,864
    BatchNorm2d-9 [-1, 64, 8, 8] 128
    ReLU-10 [-1, 64, 8, 8] 0
    Conv2d-11 [-1, 256, 8, 8] 16,384
    BatchNorm2d-12 [-1, 256, 8, 8] 512
    Conv2d-13 [-1, 256, 8, 8] 16,384
    BatchNorm2d-14 [-1, 256, 8, 8] 512
    ReLU-15 [-1, 256, 8, 8] 0
    Bottleneck-16 [-1, 256, 8, 8] 0
    Conv2d-17 [-1, 64, 8, 8] 16,384
    BatchNorm2d-18 [-1, 64, 8, 8] 128
    ReLU-19 [-1, 64, 8, 8] 0
    Conv2d-20 [-1, 64, 8, 8] 36,864
    BatchNorm2d-21 [-1, 64, 8, 8] 128
    ReLU-22 [-1, 64, 8, 8] 0
    Conv2d-23 [-1, 256, 8, 8] 16,384
    BatchNorm2d-24 [-1, 256, 8, 8] 512
    ReLU-25 [-1, 256, 8, 8] 0
    Bottleneck-26 [-1, 256, 8, 8] 0
    Conv2d-27 [-1, 64, 8, 8] 16,384
    BatchNorm2d-28 [-1, 64, 8, 8] 128
    ReLU-29 [-1, 64, 8, 8] 0
    Conv2d-30 [-1, 64, 8, 8] 36,864
    BatchNorm2d-31 [-1, 64, 8, 8] 128
    ReLU-32 [-1, 64, 8, 8] 0
    Conv2d-33 [-1, 256, 8, 8] 16,384
    BatchNorm2d-34 [-1, 256, 8, 8] 512
    ReLU-35 [-1, 256, 8, 8] 0
    Bottleneck-36 [-1, 256, 8, 8] 0
    Conv2d-37 [-1, 128, 8, 8] 32,768
    BatchNorm2d-38 [-1, 128, 8, 8] 256
    ReLU-39 [-1, 128, 8, 8] 0
    Conv2d-40 [-1, 128, 4, 4] 147,456
    BatchNorm2d-41 [-1, 128, 4, 4] 256
    ReLU-42 [-1, 128, 4, 4] 0
    Conv2d-43 [-1, 512, 4, 4] 65,536
    BatchNorm2d-44 [-1, 512, 4, 4] 1,024
    Conv2d-45 [-1, 512, 4, 4] 131,072
    BatchNorm2d-46 [-1, 512, 4, 4] 1,024
    ReLU-47 [-1, 512, 4, 4] 0
    Bottleneck-48 [-1, 512, 4, 4] 0
    Conv2d-49 [-1, 128, 4, 4] 65,536
    BatchNorm2d-50 [-1, 128, 4, 4] 256
    ReLU-51 [-1, 128, 4, 4] 0
    Conv2d-52 [-1, 128, 4, 4] 147,456
    BatchNorm2d-53 [-1, 128, 4, 4] 256
    ReLU-54 [-1, 128, 4, 4] 0
    Conv2d-55 [-1, 512, 4, 4] 65,536
    BatchNorm2d-56 [-1, 512, 4, 4] 1,024
    ReLU-57 [-1, 512, 4, 4] 0
    Bottleneck-58 [-1, 512, 4, 4] 0
    Conv2d-59 [-1, 128, 4, 4] 65,536
    BatchNorm2d-60 [-1, 128, 4, 4] 256
    ReLU-61 [-1, 128, 4, 4] 0
    Conv2d-62 [-1, 128, 4, 4] 147,456
    BatchNorm2d-63 [-1, 128, 4, 4] 256
    ReLU-64 [-1, 128, 4, 4] 0
    Conv2d-65 [-1, 512, 4, 4] 65,536
    BatchNorm2d-66 [-1, 512, 4, 4] 1,024
    ReLU-67 [-1, 512, 4, 4] 0
    Bottleneck-68 [-1, 512, 4, 4] 0
    Conv2d-69 [-1, 128, 4, 4] 65,536
    BatchNorm2d-70 [-1, 128, 4, 4] 256
    ReLU-71 [-1, 128, 4, 4] 0
    Conv2d-72 [-1, 128, 4, 4] 147,456
    BatchNorm2d-73 [-1, 128, 4, 4] 256
    ReLU-74 [-1, 128, 4, 4] 0
    Conv2d-75 [-1, 512, 4, 4] 65,536
    BatchNorm2d-76 [-1, 512, 4, 4] 1,024
    ReLU-77 [-1, 512, 4, 4] 0
    Bottleneck-78 [-1, 512, 4, 4] 0
    Conv2d-79 [-1, 128, 4, 4] 65,536
    BatchNorm2d-80 [-1, 128, 4, 4] 256
    ReLU-81 [-1, 128, 4, 4] 0
    Conv2d-82 [-1, 128, 4, 4] 147,456
    BatchNorm2d-83 [-1, 128, 4, 4] 256
    ReLU-84 [-1, 128, 4, 4] 0
    Conv2d-85 [-1, 512, 4, 4] 65,536
    BatchNorm2d-86 [-1, 512, 4, 4] 1,024
    ReLU-87 [-1, 512, 4, 4] 0
    Bottleneck-88 [-1, 512, 4, 4] 0
    Conv2d-89 [-1, 128, 4, 4] 65,536
    BatchNorm2d-90 [-1, 128, 4, 4] 256
    ReLU-91 [-1, 128, 4, 4] 0
    Conv2d-92 [-1, 128, 4, 4] 147,456
    BatchNorm2d-93 [-1, 128, 4, 4] 256
    ReLU-94 [-1, 128, 4, 4] 0
    Conv2d-95 [-1, 512, 4, 4] 65,536
    BatchNorm2d-96 [-1, 512, 4, 4] 1,024
    ReLU-97 [-1, 512, 4, 4] 0
    Bottleneck-98 [-1, 512, 4, 4] 0
    Conv2d-99 [-1, 128, 4, 4] 65,536
    BatchNorm2d-100 [-1, 128, 4, 4] 256
    ReLU-101 [-1, 128, 4, 4] 0
    Conv2d-102 [-1, 128, 4, 4] 147,456
    BatchNorm2d-103 [-1, 128, 4, 4] 256
    ReLU-104 [-1, 128, 4, 4] 0
    Conv2d-105 [-1, 512, 4, 4] 65,536
    BatchNorm2d-106 [-1, 512, 4, 4] 1,024
    ReLU-107 [-1, 512, 4, 4] 0
    Bottleneck-108 [-1, 512, 4, 4] 0
    Conv2d-109 [-1, 128, 4, 4] 65,536
    BatchNorm2d-110 [-1, 128, 4, 4] 256
    ReLU-111 [-1, 128, 4, 4] 0
    Conv2d-112 [-1, 128, 4, 4] 147,456
    BatchNorm2d-113 [-1, 128, 4, 4] 256
    ReLU-114 [-1, 128, 4, 4] 0
    Conv2d-115 [-1, 512, 4, 4] 65,536
    BatchNorm2d-116 [-1, 512, 4, 4] 1,024
    ReLU-117 [-1, 512, 4, 4] 0
    Bottleneck-118 [-1, 512, 4, 4] 0
    Conv2d-119 [-1, 256, 4, 4] 131,072
    BatchNorm2d-120 [-1, 256, 4, 4] 512
    ReLU-121 [-1, 256, 4, 4] 0
    Conv2d-122 [-1, 256, 2, 2] 589,824
    BatchNorm2d-123 [-1, 256, 2, 2] 512
    ReLU-124 [-1, 256, 2, 2] 0
    Conv2d-125 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-126 [-1, 1024, 2, 2] 2,048
    Conv2d-127 [-1, 1024, 2, 2] 524,288
    BatchNorm2d-128 [-1, 1024, 2, 2] 2,048
    ReLU-129 [-1, 1024, 2, 2] 0
    Bottleneck-130 [-1, 1024, 2, 2] 0
    Conv2d-131 [-1, 256, 2, 2] 262,144
    BatchNorm2d-132 [-1, 256, 2, 2] 512
    ReLU-133 [-1, 256, 2, 2] 0
    Conv2d-134 [-1, 256, 2, 2] 589,824
    BatchNorm2d-135 [-1, 256, 2, 2] 512
    ReLU-136 [-1, 256, 2, 2] 0
    Conv2d-137 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-138 [-1, 1024, 2, 2] 2,048
    ReLU-139 [-1, 1024, 2, 2] 0
    Bottleneck-140 [-1, 1024, 2, 2] 0
    Conv2d-141 [-1, 256, 2, 2] 262,144
    BatchNorm2d-142 [-1, 256, 2, 2] 512
    ReLU-143 [-1, 256, 2, 2] 0
    Conv2d-144 [-1, 256, 2, 2] 589,824
    BatchNorm2d-145 [-1, 256, 2, 2] 512
    ReLU-146 [-1, 256, 2, 2] 0
    Conv2d-147 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-148 [-1, 1024, 2, 2] 2,048
    ReLU-149 [-1, 1024, 2, 2] 0
    Bottleneck-150 [-1, 1024, 2, 2] 0
    Conv2d-151 [-1, 256, 2, 2] 262,144
    BatchNorm2d-152 [-1, 256, 2, 2] 512
    ReLU-153 [-1, 256, 2, 2] 0
    Conv2d-154 [-1, 256, 2, 2] 589,824
    BatchNorm2d-155 [-1, 256, 2, 2] 512
    ReLU-156 [-1, 256, 2, 2] 0
    Conv2d-157 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-158 [-1, 1024, 2, 2] 2,048
    ReLU-159 [-1, 1024, 2, 2] 0
    Bottleneck-160 [-1, 1024, 2, 2] 0
    Conv2d-161 [-1, 256, 2, 2] 262,144
    BatchNorm2d-162 [-1, 256, 2, 2] 512
    ReLU-163 [-1, 256, 2, 2] 0
    Conv2d-164 [-1, 256, 2, 2] 589,824
    BatchNorm2d-165 [-1, 256, 2, 2] 512
    ReLU-166 [-1, 256, 2, 2] 0
    Conv2d-167 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-168 [-1, 1024, 2, 2] 2,048
    ReLU-169 [-1, 1024, 2, 2] 0
    Bottleneck-170 [-1, 1024, 2, 2] 0
    Conv2d-171 [-1, 256, 2, 2] 262,144
    BatchNorm2d-172 [-1, 256, 2, 2] 512
    ReLU-173 [-1, 256, 2, 2] 0
    Conv2d-174 [-1, 256, 2, 2] 589,824
    BatchNorm2d-175 [-1, 256, 2, 2] 512
    ReLU-176 [-1, 256, 2, 2] 0
    Conv2d-177 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-178 [-1, 1024, 2, 2] 2,048
    ReLU-179 [-1, 1024, 2, 2] 0
    Bottleneck-180 [-1, 1024, 2, 2] 0
    Conv2d-181 [-1, 256, 2, 2] 262,144
    BatchNorm2d-182 [-1, 256, 2, 2] 512
    ReLU-183 [-1, 256, 2, 2] 0
    Conv2d-184 [-1, 256, 2, 2] 589,824
    BatchNorm2d-185 [-1, 256, 2, 2] 512
    ReLU-186 [-1, 256, 2, 2] 0
    Conv2d-187 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-188 [-1, 1024, 2, 2] 2,048
    ReLU-189 [-1, 1024, 2, 2] 0
    Bottleneck-190 [-1, 1024, 2, 2] 0
    Conv2d-191 [-1, 256, 2, 2] 262,144
    BatchNorm2d-192 [-1, 256, 2, 2] 512
    ReLU-193 [-1, 256, 2, 2] 0
    Conv2d-194 [-1, 256, 2, 2] 589,824
    BatchNorm2d-195 [-1, 256, 2, 2] 512
    ReLU-196 [-1, 256, 2, 2] 0
    Conv2d-197 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-198 [-1, 1024, 2, 2] 2,048
    ReLU-199 [-1, 1024, 2, 2] 0
    Bottleneck-200 [-1, 1024, 2, 2] 0
    Conv2d-201 [-1, 256, 2, 2] 262,144
    BatchNorm2d-202 [-1, 256, 2, 2] 512
    ReLU-203 [-1, 256, 2, 2] 0
    Conv2d-204 [-1, 256, 2, 2] 589,824
    BatchNorm2d-205 [-1, 256, 2, 2] 512
    ReLU-206 [-1, 256, 2, 2] 0
    Conv2d-207 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-208 [-1, 1024, 2, 2] 2,048
    ReLU-209 [-1, 1024, 2, 2] 0
    Bottleneck-210 [-1, 1024, 2, 2] 0
    Conv2d-211 [-1, 256, 2, 2] 262,144
    BatchNorm2d-212 [-1, 256, 2, 2] 512
    ReLU-213 [-1, 256, 2, 2] 0
    Conv2d-214 [-1, 256, 2, 2] 589,824
    BatchNorm2d-215 [-1, 256, 2, 2] 512
    ReLU-216 [-1, 256, 2, 2] 0
    Conv2d-217 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-218 [-1, 1024, 2, 2] 2,048
    ReLU-219 [-1, 1024, 2, 2] 0
    Bottleneck-220 [-1, 1024, 2, 2] 0
    Conv2d-221 [-1, 256, 2, 2] 262,144
    BatchNorm2d-222 [-1, 256, 2, 2] 512
    ReLU-223 [-1, 256, 2, 2] 0
    Conv2d-224 [-1, 256, 2, 2] 589,824
    BatchNorm2d-225 [-1, 256, 2, 2] 512
    ReLU-226 [-1, 256, 2, 2] 0
    Conv2d-227 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-228 [-1, 1024, 2, 2] 2,048
    ReLU-229 [-1, 1024, 2, 2] 0
    Bottleneck-230 [-1, 1024, 2, 2] 0
    Conv2d-231 [-1, 256, 2, 2] 262,144
    BatchNorm2d-232 [-1, 256, 2, 2] 512
    ReLU-233 [-1, 256, 2, 2] 0
    Conv2d-234 [-1, 256, 2, 2] 589,824
    BatchNorm2d-235 [-1, 256, 2, 2] 512
    ReLU-236 [-1, 256, 2, 2] 0
    Conv2d-237 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-238 [-1, 1024, 2, 2] 2,048
    ReLU-239 [-1, 1024, 2, 2] 0
    Bottleneck-240 [-1, 1024, 2, 2] 0
    Conv2d-241 [-1, 256, 2, 2] 262,144
    BatchNorm2d-242 [-1, 256, 2, 2] 512
    ReLU-243 [-1, 256, 2, 2] 0
    Conv2d-244 [-1, 256, 2, 2] 589,824
    BatchNorm2d-245 [-1, 256, 2, 2] 512
    ReLU-246 [-1, 256, 2, 2] 0
    Conv2d-247 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-248 [-1, 1024, 2, 2] 2,048
    ReLU-249 [-1, 1024, 2, 2] 0
    Bottleneck-250 [-1, 1024, 2, 2] 0
    Conv2d-251 [-1, 256, 2, 2] 262,144
    BatchNorm2d-252 [-1, 256, 2, 2] 512
    ReLU-253 [-1, 256, 2, 2] 0
    Conv2d-254 [-1, 256, 2, 2] 589,824
    BatchNorm2d-255 [-1, 256, 2, 2] 512
    ReLU-256 [-1, 256, 2, 2] 0
    Conv2d-257 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-258 [-1, 1024, 2, 2] 2,048
    ReLU-259 [-1, 1024, 2, 2] 0
    Bottleneck-260 [-1, 1024, 2, 2] 0
    Conv2d-261 [-1, 256, 2, 2] 262,144
    BatchNorm2d-262 [-1, 256, 2, 2] 512
    ReLU-263 [-1, 256, 2, 2] 0
    Conv2d-264 [-1, 256, 2, 2] 589,824
    BatchNorm2d-265 [-1, 256, 2, 2] 512
    ReLU-266 [-1, 256, 2, 2] 0
    Conv2d-267 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-268 [-1, 1024, 2, 2] 2,048
    ReLU-269 [-1, 1024, 2, 2] 0
    Bottleneck-270 [-1, 1024, 2, 2] 0
    Conv2d-271 [-1, 256, 2, 2] 262,144
    BatchNorm2d-272 [-1, 256, 2, 2] 512
    ReLU-273 [-1, 256, 2, 2] 0
    Conv2d-274 [-1, 256, 2, 2] 589,824
    BatchNorm2d-275 [-1, 256, 2, 2] 512
    ReLU-276 [-1, 256, 2, 2] 0
    Conv2d-277 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-278 [-1, 1024, 2, 2] 2,048
    ReLU-279 [-1, 1024, 2, 2] 0
    Bottleneck-280 [-1, 1024, 2, 2] 0
    Conv2d-281 [-1, 256, 2, 2] 262,144
    BatchNorm2d-282 [-1, 256, 2, 2] 512
    ReLU-283 [-1, 256, 2, 2] 0
    Conv2d-284 [-1, 256, 2, 2] 589,824
    BatchNorm2d-285 [-1, 256, 2, 2] 512
    ReLU-286 [-1, 256, 2, 2] 0
    Conv2d-287 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-288 [-1, 1024, 2, 2] 2,048
    ReLU-289 [-1, 1024, 2, 2] 0
    Bottleneck-290 [-1, 1024, 2, 2] 0
    Conv2d-291 [-1, 256, 2, 2] 262,144
    BatchNorm2d-292 [-1, 256, 2, 2] 512
    ReLU-293 [-1, 256, 2, 2] 0
    Conv2d-294 [-1, 256, 2, 2] 589,824
    BatchNorm2d-295 [-1, 256, 2, 2] 512
    ReLU-296 [-1, 256, 2, 2] 0
    Conv2d-297 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-298 [-1, 1024, 2, 2] 2,048
    ReLU-299 [-1, 1024, 2, 2] 0
    Bottleneck-300 [-1, 1024, 2, 2] 0
    Conv2d-301 [-1, 256, 2, 2] 262,144
    BatchNorm2d-302 [-1, 256, 2, 2] 512
    ReLU-303 [-1, 256, 2, 2] 0
    Conv2d-304 [-1, 256, 2, 2] 589,824
    BatchNorm2d-305 [-1, 256, 2, 2] 512
    ReLU-306 [-1, 256, 2, 2] 0
    Conv2d-307 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-308 [-1, 1024, 2, 2] 2,048
    ReLU-309 [-1, 1024, 2, 2] 0
    Bottleneck-310 [-1, 1024, 2, 2] 0
    Conv2d-311 [-1, 256, 2, 2] 262,144
    BatchNorm2d-312 [-1, 256, 2, 2] 512
    ReLU-313 [-1, 256, 2, 2] 0
    Conv2d-314 [-1, 256, 2, 2] 589,824
    BatchNorm2d-315 [-1, 256, 2, 2] 512
    ReLU-316 [-1, 256, 2, 2] 0
    Conv2d-317 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-318 [-1, 1024, 2, 2] 2,048
    ReLU-319 [-1, 1024, 2, 2] 0
    Bottleneck-320 [-1, 1024, 2, 2] 0
    Conv2d-321 [-1, 256, 2, 2] 262,144
    BatchNorm2d-322 [-1, 256, 2, 2] 512
    ReLU-323 [-1, 256, 2, 2] 0
    Conv2d-324 [-1, 256, 2, 2] 589,824
    BatchNorm2d-325 [-1, 256, 2, 2] 512
    ReLU-326 [-1, 256, 2, 2] 0
    Conv2d-327 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-328 [-1, 1024, 2, 2] 2,048
    ReLU-329 [-1, 1024, 2, 2] 0
    Bottleneck-330 [-1, 1024, 2, 2] 0
    Conv2d-331 [-1, 256, 2, 2] 262,144
    BatchNorm2d-332 [-1, 256, 2, 2] 512
    ReLU-333 [-1, 256, 2, 2] 0
    Conv2d-334 [-1, 256, 2, 2] 589,824
    BatchNorm2d-335 [-1, 256, 2, 2] 512
    ReLU-336 [-1, 256, 2, 2] 0
    Conv2d-337 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-338 [-1, 1024, 2, 2] 2,048
    ReLU-339 [-1, 1024, 2, 2] 0
    Bottleneck-340 [-1, 1024, 2, 2] 0
    Conv2d-341 [-1, 256, 2, 2] 262,144
    BatchNorm2d-342 [-1, 256, 2, 2] 512
    ReLU-343 [-1, 256, 2, 2] 0
    Conv2d-344 [-1, 256, 2, 2] 589,824
    BatchNorm2d-345 [-1, 256, 2, 2] 512
    ReLU-346 [-1, 256, 2, 2] 0
    Conv2d-347 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-348 [-1, 1024, 2, 2] 2,048
    ReLU-349 [-1, 1024, 2, 2] 0
    Bottleneck-350 [-1, 1024, 2, 2] 0
    Conv2d-351 [-1, 256, 2, 2] 262,144
    BatchNorm2d-352 [-1, 256, 2, 2] 512
    ReLU-353 [-1, 256, 2, 2] 0
    Conv2d-354 [-1, 256, 2, 2] 589,824
    BatchNorm2d-355 [-1, 256, 2, 2] 512
    ReLU-356 [-1, 256, 2, 2] 0
    Conv2d-357 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-358 [-1, 1024, 2, 2] 2,048
    ReLU-359 [-1, 1024, 2, 2] 0
    Bottleneck-360 [-1, 1024, 2, 2] 0
    Conv2d-361 [-1, 256, 2, 2] 262,144
    BatchNorm2d-362 [-1, 256, 2, 2] 512
    ReLU-363 [-1, 256, 2, 2] 0
    Conv2d-364 [-1, 256, 2, 2] 589,824
    BatchNorm2d-365 [-1, 256, 2, 2] 512
    ReLU-366 [-1, 256, 2, 2] 0
    Conv2d-367 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-368 [-1, 1024, 2, 2] 2,048
    ReLU-369 [-1, 1024, 2, 2] 0
    Bottleneck-370 [-1, 1024, 2, 2] 0
    Conv2d-371 [-1, 256, 2, 2] 262,144
    BatchNorm2d-372 [-1, 256, 2, 2] 512
    ReLU-373 [-1, 256, 2, 2] 0
    Conv2d-374 [-1, 256, 2, 2] 589,824
    BatchNorm2d-375 [-1, 256, 2, 2] 512
    ReLU-376 [-1, 256, 2, 2] 0
    Conv2d-377 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-378 [-1, 1024, 2, 2] 2,048
    ReLU-379 [-1, 1024, 2, 2] 0
    Bottleneck-380 [-1, 1024, 2, 2] 0
    Conv2d-381 [-1, 256, 2, 2] 262,144
    BatchNorm2d-382 [-1, 256, 2, 2] 512
    ReLU-383 [-1, 256, 2, 2] 0
    Conv2d-384 [-1, 256, 2, 2] 589,824
    BatchNorm2d-385 [-1, 256, 2, 2] 512
    ReLU-386 [-1, 256, 2, 2] 0
    Conv2d-387 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-388 [-1, 1024, 2, 2] 2,048
    ReLU-389 [-1, 1024, 2, 2] 0
    Bottleneck-390 [-1, 1024, 2, 2] 0
    Conv2d-391 [-1, 256, 2, 2] 262,144
    BatchNorm2d-392 [-1, 256, 2, 2] 512
    ReLU-393 [-1, 256, 2, 2] 0
    Conv2d-394 [-1, 256, 2, 2] 589,824
    BatchNorm2d-395 [-1, 256, 2, 2] 512
    ReLU-396 [-1, 256, 2, 2] 0
    Conv2d-397 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-398 [-1, 1024, 2, 2] 2,048
    ReLU-399 [-1, 1024, 2, 2] 0
    Bottleneck-400 [-1, 1024, 2, 2] 0
    Conv2d-401 [-1, 256, 2, 2] 262,144
    BatchNorm2d-402 [-1, 256, 2, 2] 512
    ReLU-403 [-1, 256, 2, 2] 0
    Conv2d-404 [-1, 256, 2, 2] 589,824
    BatchNorm2d-405 [-1, 256, 2, 2] 512
    ReLU-406 [-1, 256, 2, 2] 0
    Conv2d-407 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-408 [-1, 1024, 2, 2] 2,048
    ReLU-409 [-1, 1024, 2, 2] 0
    Bottleneck-410 [-1, 1024, 2, 2] 0
    Conv2d-411 [-1, 256, 2, 2] 262,144
    BatchNorm2d-412 [-1, 256, 2, 2] 512
    ReLU-413 [-1, 256, 2, 2] 0
    Conv2d-414 [-1, 256, 2, 2] 589,824
    BatchNorm2d-415 [-1, 256, 2, 2] 512
    ReLU-416 [-1, 256, 2, 2] 0
    Conv2d-417 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-418 [-1, 1024, 2, 2] 2,048
    ReLU-419 [-1, 1024, 2, 2] 0
    Bottleneck-420 [-1, 1024, 2, 2] 0
    Conv2d-421 [-1, 256, 2, 2] 262,144
    BatchNorm2d-422 [-1, 256, 2, 2] 512
    ReLU-423 [-1, 256, 2, 2] 0
    Conv2d-424 [-1, 256, 2, 2] 589,824
    BatchNorm2d-425 [-1, 256, 2, 2] 512
    ReLU-426 [-1, 256, 2, 2] 0
    Conv2d-427 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-428 [-1, 1024, 2, 2] 2,048
    ReLU-429 [-1, 1024, 2, 2] 0
    Bottleneck-430 [-1, 1024, 2, 2] 0
    Conv2d-431 [-1, 256, 2, 2] 262,144
    BatchNorm2d-432 [-1, 256, 2, 2] 512
    ReLU-433 [-1, 256, 2, 2] 0
    Conv2d-434 [-1, 256, 2, 2] 589,824
    BatchNorm2d-435 [-1, 256, 2, 2] 512
    ReLU-436 [-1, 256, 2, 2] 0
    Conv2d-437 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-438 [-1, 1024, 2, 2] 2,048
    ReLU-439 [-1, 1024, 2, 2] 0
    Bottleneck-440 [-1, 1024, 2, 2] 0
    Conv2d-441 [-1, 256, 2, 2] 262,144
    BatchNorm2d-442 [-1, 256, 2, 2] 512
    ReLU-443 [-1, 256, 2, 2] 0
    Conv2d-444 [-1, 256, 2, 2] 589,824
    BatchNorm2d-445 [-1, 256, 2, 2] 512
    ReLU-446 [-1, 256, 2, 2] 0
    Conv2d-447 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-448 [-1, 1024, 2, 2] 2,048
    ReLU-449 [-1, 1024, 2, 2] 0
    Bottleneck-450 [-1, 1024, 2, 2] 0
    Conv2d-451 [-1, 256, 2, 2] 262,144
    BatchNorm2d-452 [-1, 256, 2, 2] 512
    ReLU-453 [-1, 256, 2, 2] 0
    Conv2d-454 [-1, 256, 2, 2] 589,824
    BatchNorm2d-455 [-1, 256, 2, 2] 512
    ReLU-456 [-1, 256, 2, 2] 0
    Conv2d-457 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-458 [-1, 1024, 2, 2] 2,048
    ReLU-459 [-1, 1024, 2, 2] 0
    Bottleneck-460 [-1, 1024, 2, 2] 0
    Conv2d-461 [-1, 256, 2, 2] 262,144
    BatchNorm2d-462 [-1, 256, 2, 2] 512
    ReLU-463 [-1, 256, 2, 2] 0
    Conv2d-464 [-1, 256, 2, 2] 589,824
    BatchNorm2d-465 [-1, 256, 2, 2] 512
    ReLU-466 [-1, 256, 2, 2] 0
    Conv2d-467 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-468 [-1, 1024, 2, 2] 2,048
    ReLU-469 [-1, 1024, 2, 2] 0
    Bottleneck-470 [-1, 1024, 2, 2] 0
    Conv2d-471 [-1, 256, 2, 2] 262,144
    BatchNorm2d-472 [-1, 256, 2, 2] 512
    ReLU-473 [-1, 256, 2, 2] 0
    Conv2d-474 [-1, 256, 2, 2] 589,824
    BatchNorm2d-475 [-1, 256, 2, 2] 512
    ReLU-476 [-1, 256, 2, 2] 0
    Conv2d-477 [-1, 1024, 2, 2] 262,144
    BatchNorm2d-478 [-1, 1024, 2, 2] 2,048
    ReLU-479 [-1, 1024, 2, 2] 0
    Bottleneck-480 [-1, 1024, 2, 2] 0
    Conv2d-481 [-1, 512, 2, 2] 524,288
    BatchNorm2d-482 [-1, 512, 2, 2] 1,024
    ReLU-483 [-1, 512, 2, 2] 0
    Conv2d-484 [-1, 512, 1, 1] 2,359,296
    BatchNorm2d-485 [-1, 512, 1, 1] 1,024
    ReLU-486 [-1, 512, 1, 1] 0
    Conv2d-487 [-1, 2048, 1, 1] 1,048,576
    BatchNorm2d-488 [-1, 2048, 1, 1] 4,096
    Conv2d-489 [-1, 2048, 1, 1] 2,097,152
    BatchNorm2d-490 [-1, 2048, 1, 1] 4,096
    ReLU-491 [-1, 2048, 1, 1] 0
    Bottleneck-492 [-1, 2048, 1, 1] 0
    Conv2d-493 [-1, 512, 1, 1] 1,048,576
    BatchNorm2d-494 [-1, 512, 1, 1] 1,024
    ReLU-495 [-1, 512, 1, 1] 0
    Conv2d-496 [-1, 512, 1, 1] 2,359,296
    BatchNorm2d-497 [-1, 512, 1, 1] 1,024
    ReLU-498 [-1, 512, 1, 1] 0
    Conv2d-499 [-1, 2048, 1, 1] 1,048,576
    BatchNorm2d-500 [-1, 2048, 1, 1] 4,096
    ReLU-501 [-1, 2048, 1, 1] 0
    Bottleneck-502 [-1, 2048, 1, 1] 0
    Conv2d-503 [-1, 512, 1, 1] 1,048,576
    BatchNorm2d-504 [-1, 512, 1, 1] 1,024
    ReLU-505 [-1, 512, 1, 1] 0
    Conv2d-506 [-1, 512, 1, 1] 2,359,296
    BatchNorm2d-507 [-1, 512, 1, 1] 1,024
    ReLU-508 [-1, 512, 1, 1] 0
    Conv2d-509 [-1, 2048, 1, 1] 1,048,576
    BatchNorm2d-510 [-1, 2048, 1, 1] 4,096
    ReLU-511 [-1, 2048, 1, 1] 0
    Bottleneck-512 [-1, 2048, 1, 1] 0
    AdaptiveAvgPool2d-513 [-1, 2048, 1, 1] 0
    Linear-514 [-1, 100] 204,900
    LogSoftmax-515 [-1, 100] 0
    ================================================================
    Total params: 58,348,708
    Trainable params: 204,900
    Non-trainable params: 58,143,808
    ----------------------------------------------------------------
    Input size (MB): 0.01
    Forward/backward pass size (MB): 12.40
    Params size (MB): 222.58
    Estimated Total Size (MB): 234.99
    ----------------------------------------------------------------
    None
    Params to learn
    fc.0.weight
    fc.0.bias
    Files already downloaded and verified
    Files already downloaded and verified
    Epoch 0/9
    ----------
    Time elapsed 0m 21s
    train Loss: 7.5111 Acc: 0.1484
    Time elapsed 0m 26s
    valid Loss: 3.7821 Acc: 0.2493
    /usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:154: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
    warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
    Optimizer learning rate: 0.0100000

    Epoch 1/9
    ----------
    Time elapsed 0m 47s
    train Loss: 2.9405 Acc: 0.3109
    Time elapsed 0m 52s
    valid Loss: 3.2014 Acc: 0.2739
    Optimizer learning rate: 0.0100000

    Epoch 2/9
    ----------
    Time elapsed 1m 12s
    train Loss: 2.5866 Acc: 0.3622
    Time elapsed 1m 17s
    valid Loss: 3.2239 Acc: 0.2787
    Optimizer learning rate: 0.0100000

    Epoch 3/9
    ----------
    Time elapsed 1m 38s
    train Loss: 2.4077 Acc: 0.3969
    Time elapsed 1m 43s
    valid Loss: 3.2608 Acc: 0.2811
    Optimizer learning rate: 0.0100000

    Epoch 4/9
    ----------
    Time elapsed 2m 4s
    train Loss: 2.2742 Acc: 0.4263
    Time elapsed 2m 9s
    valid Loss: 3.4260 Acc: 0.2689
    Optimizer learning rate: 0.0100000

    Epoch 5/9
    ----------
    Time elapsed 2m 29s
    train Loss: 2.1942 Acc: 0.4434
    Time elapsed 2m 34s
    valid Loss: 3.4697 Acc: 0.2760
    Optimizer learning rate: 0.0100000

    Epoch 6/9
    ----------
    Time elapsed 2m 54s
    train Loss: 2.1369 Acc: 0.4583
    Time elapsed 2m 59s
    valid Loss: 3.5391 Acc: 0.2744
    Optimizer learning rate: 0.0100000

    Epoch 7/9
    ----------
    Time elapsed 3m 20s
    train Loss: 2.0382 Acc: 0.4771
    Time elapsed 3m 24s
    valid Loss: 3.5992 Acc: 0.2721
    Optimizer learning rate: 0.0100000

    Epoch 8/9
    ----------
    Time elapsed 3m 45s
    train Loss: 1.9776 Acc: 0.4939
    Time elapsed 3m 50s
    valid Loss: 3.7533 Acc: 0.2685
    Optimizer learning rate: 0.0100000

    Epoch 9/9
    ----------
    Time elapsed 4m 11s
    train Loss: 1.9309 Acc: 0.5035
    Time elapsed 4m 16s
    valid Loss: 3.9663 Acc: 0.2558
    Optimizer learning rate: 0.0100000

    Training complete in 4m 16s
    Best val Acc: 0.281100

    到此这篇关于PyTorch一小时掌握之迁移学习篇的文章就介绍到这了,更多相关PyTorch迁移学习内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • Pytorch模型迁移和迁移学习,导入部分模型参数的操作
    • PyTorch 迁移学习实践(几分钟即可训练好自己的模型)
    上一篇:浅谈Python面向对象编程oop思想心得
    下一篇:Python基础常用内建函数图文示例解析
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    PyTorch一小时掌握之迁移学习篇 PyTorch,一小时,掌握,之,迁移,