• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    天下快富电话机器人的简单介绍
    AI电话机器人免费使用   加微信:veteran88
    防封电销卡免费获取   加微信:veteran0003

    今天给各位分享天下快富电话机器人的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

    本文目录一览:

    1、单凭NLP撑起客服机器人?恐怕你对NLP有什么误解 | 爱分析调研 2、AI智能语音机器人哪家好? 3、电销机器人效果如何? 4、服务类的智能机器人在哪能买到 单凭NLP撑起客服机器人?恐怕你对NLP有什么误解 | 爱分析调研

    调研 | 李喆 洪军

    撰写 | 洪军

    随着NLP技术的兴起以及google的bert模型开源,不少新兴企业开始进入客服机器人领域,市面上逐渐出现了一大批质量参差不齐的客服机器人。其中大多数只能完成某个场景的验证,在深入做复杂场景时往往无所适从,真正具有竞争力的产品可谓是凤毛麟角。

    众多企业以NLP作为噱头大肆宣传,但其中真正能经得起考验的产品却少之又少。

    主要原因在于,单纯地利用NLP技术只适合于回答一些规范性的问题,例如实体属性、关系的问答,并不能够完全解决客服机器人的全部实际问题。

    实际上,rule base、深度学习、NLP技术在客服机器人实际应用过程中拥有各自的优势。

    rule base适用于一些常见问题的场景,通过关键词匹配、快速搜索,能够快速、准确的进行问答;深度学习适用于一些泛化类的意图问题,他能够基于上下文语义理解,更好的服务客户;而知识图谱适用于一些规整的问题,例如实体属性的问答。

    因此,想要做好一款智能高效的客服机器人,只有以海量的数据为基础,在实践中运用不同技术对产品进行不断打磨,才能带来媲美人工的舒心服务。

    云问 科技 基于rule base、深度学习、NLP等技术针对具体问答场景提供不同的技术,大幅提高了客服机器人的智能化水平。

    云问 科技 是一家客服机器人供应商,并在客服机器人基础上提供质检、培训等增值服务,帮助企业在服务和管理上更加高效智能。

    与同行业其他公司相比,云问 科技 最大的特点在于技术融合性与庞大知识库。云问 科技 综合rule-base、NLP、深度学习等技术搭建了客服机器人底层平台,并构建了一个拥有50多个细分行业的知识图谱与常见问题问答的知识库,将不同知识库内容搭载在底层平台上为金融、电商、政务等行业提供相应的客服机器人。

    在服务的场景上,云问 科技 提供的客服机器人以接待、咨询等呼入场景为主,包括售前与售后环节,主要以文本形式进行交互问答,且可以进行业务咨询全覆盖,以及多群体访问。

    除客服机器人之外,云问 科技 还提供企业内部人事、IT、财务等自动咨询和系统服务问答调用的智能服务平台以及实体机器人等增值服务。

    目前,云问 科技 客服机器人以本地化部署方式收费,第一年运维免费提供,之后每年会收取20%的维护费用。企业内部智能服务系统以SaaS订阅方式收费,订阅费用根据API调用量决定。

    客户方面,云问 科技 以金融、政府、IT行业的中大型客户为主,典型客户有国泰人寿、华夏保险、海南省人民政府、腾讯等。

    云问 科技 在2013年成立之初,就采用rule

    base技术上线了第一款文本客服机器人。

    但单纯的使用rule base技术应用场景有限,只在一些频繁性的问题问答较为适用。于是,在2015年,云问 科技 引入深度学习技术,并上线了第一款在线客服系统,可以同时满足多人的在线自动问答,并增加了问答内容范围。

    随着客户对客服机器人准确率的要求越来越高。2017年7月,融合了NLP技术的云问客服机器人上线,在一些规范性的实体属性、关系的问答情形精确度大幅提高。

    现如今,云问 科技 在针对客户的需求时,已将三种技术融合的游刃有余。由于不同企业的FAQ库与知识图谱略有不同,如何在较短的时间内提供高效智能的产品变得尤为重要。而云问 科技 恰好精于此道。云问 科技 经过6年的专心打磨,已经熟知在哪些问答问题上应该使用哪种技术、哪种模型,技术转化为产品能力居行业领先水平。

    在产品实际部署时,由于需要了解客户的需求,构建企业的知识图谱,因此,部署时间通常为3-6个月。而云问 科技 与中大型客户从开始接触到最终产品落地只需要1-3个月,其中产品实际落地时间往往在1个星期之内,工程化能力同样出众。

    目前,云问 科技 经过长达6年的积累,已经构建了一个庞大的知识库。该知识库由50个细分领域FAQ(FrequentlyAsked

    Questions)与知识图谱组成,行业包括政务、金融、物流、电商等。

    知识库的建立,一方面为技术的优化提供数据基础。另一方面,将不同行业的知识库与底层客服机器人系统相结合,可以快速实现不同领域的产品落地,加快市场拓展进程。

    此外,云问 科技 目前服务的典型客户包括国泰人寿、华夏保险、腾讯等,示范效应显著,良好的口碑也为云问增色不少。

    以客服机器人为切入点,向企业内部智能服务场景延伸

    未来,云问 科技 将以智能高效的客服机器人作为切入点,与企业建立友好合作,并不断深入挖掘企业其他智能服务需求,提高客户的LTV。

    若只提供单纯的客服机器人,其客单价往往不高,单个的客服机器人价格在10-100万之间,具体根据企业的产品需求而定。客服机器人为一次性付费产品,之后每年会收取10%-20%的运维费用,但收入都相对较少。

    因此,云问 科技 需要不断挖掘客户需求,提供更加丰富、智能化的产品。云问 科技 将会和一些大型企业,包括美的、海尔等进行深入探讨,挖掘他们的需求,方向上包括企业内部IT场景、员工培训、企业知识管理等。

    考虑到后续在企业需求扩展时,多为定制化产品情形,云问 科技 把软件做了很好的分层,通过构建通用底层平台,从而能够快速为不同企业提供不同产品。

    爱分析从技术、场景理解、客群、获客等四个维度对云问 科技 进行评价。

    技术: 2013年开始做客服机器人,综合了FAQ、深度学习、NLP三种技术为客户提供最高效的客服系统,经验丰富,技术较强。在针对不同客户的FAQ与知识图谱时,知道采用何种技术和模型解决特定场景下的问题,使得提供的客服机器人精度更高。

    场景理解: 公司所在客服机器人领域,产品需求旺盛,市场规模为千亿级。想要做好一款智能高效的产品较难,技术与数据将会是核心竞争点。公司经过6年的积累,形成了50个细分行业的知识库,不仅能为模型优化提供数据,还能加速产品落地,扩大市场占有率。

    客群: 以中大型客户为主,行业覆盖金融、电商、政府等,典型客户包括国泰人寿、华夏保险、海尔、美的、腾讯等,示范效应显著。中大型客户比小型客户对客服系统的需求强烈,客户粘性强,付费能力强,可深入挖掘空间大。

    获客: 以直销为主,销售人员为50人。公司成立6年,中大型客户300家,SaaS型订阅客户数量数百家,客户数量较少,获客能力有待加强。

    近日,爱分析专访云问 科技 创始人兼CEO王清琛,就客服机器人发展趋势与云问 科技 业务发展进行了深入交流,现摘取部分内容如下。

    爱分析:在场景选择上,为什么云问 科技 选择接待机器人而不是外呼机器人?

    王清琛: 主要是因为不同公司的 历史 发展和技术侧重点不同,例如,如果一家公司以前是做语音的,就很容易从呼叫机器人切入,但我们之前是做文本识别的,就容易从文本切入。

    外呼场景相对来说比较容易,因为他们都是有目的、有话术、相对封闭的场景。但是呼入场景很难做深。呼入机器人需要有强大的知识库做为支撑,当一个电话呼入进来,对话不可控,用实体、边的属性很难实现全部的对话功能。所以做呼入机器人不仅就需要NLP技术、以及强大的知识库,还需要其他能力,这样才能把整个问答过程支撑起来。

    爱分析:在实际落地时,客户完全会用客服机器人服务,还是一些简单的场景让客服机器人去做?

    王清琛: 这些情况都有。主要是市场对客服机器人的认知度在不断变化。现在的发展趋势由原先的以人工客服解决为主转化为以智能客服为主。

    例如,以前,客户会在人工客服下班的时候使用机器人服务。后来,逐渐在人手不够情况下使用机器人。现在大多是先使用机器人进行服务,在无法进行回答时再使用人工。未来预计会慢慢的只在有客户投诉的时候再使用人工客服。

    爱分析:云问 科技 是只做客服机器人本身,不做在线客服系统和呼叫中心吗?

    王清琛: 对。我们一直都是只做智能这一块,包括语义分析、语义理解。

    爱分析:云问 科技 一直不做偏人工客服系统的原因是什么?

    王清琛: 云问从一开始觉得,智能是未来的方向,我们会投入更多的精力在这方面。而在人工客服系统方面,无论从运营、渠道角度,都有很多厂商在做,我们也就没有过多涉足。

    爱分析:现在最终判断客服系统与场景结合程度好坏的指标有哪些?

    王清琛: 指标有很多,大型客户在招标问答系统时都有一套评价体系,主要包括多轮对话的轮次、语义的识别、模糊匹配、知识的理解、语义的泛化。

    爱分析:现在一套中大型的客户,部署周期需要多长时间?

    王清琛: 大概需要1-3个月,主要时间花费在与客户沟通交流,了解客户的需求,构建他们的知识图谱。我们会基于我们的方法论构建一些通用的知识图普,然后会为企业构建一些深度的企业知识图普。

    爱分析:云问 科技 认为rule base、深度学习、NLP技术厂商都可能会转向客服机器人领域吗?

    王清琛: 任何一条路的可能性都有。在我们看来,不管是分词技术、还是用自然语言处理的技术做一些特定语的提取,都会解决某一个环节的产品,但不能解决整个问题。

    客服机器人是一个技术的结合,不同的环节用不同技术效果会不一样。我们更多的用底层技术打起,从最底层分词的技术做起,提供整个的一套服务,我们服务对话机器人在问答效果上优势明显。我们认为主要原因是技术的融合,而不是某一项技术引领行业的发展。

    例如,我们在做意图识别,遇到过一个超过200个选项的意图识别。当时尝试了很多算法,最后选择了深度学习算法,他的算法效果比其他算法准确度高十个百分点。

    爱分析:在2017年之前,云问有用到知识图谱技术吗?还是等知识图谱技术成熟了之后再用?

    王清琛: 知识图谱技术一直存在,高校也一直在研究。2017年开始有应用在机器人方向的导向。但是,知识图谱适合在特定场景下使用和擅长场景,并不是全部适用。知识图谱我们很早用过,但是在技术链中,他只是其中的一个环节,不能替代全部。

    爱分析:用NLP技术应用在呼入场景时,会有哪些问题?

    王清琛: 如果只用NLP技术解决呼入场景时,会使得效果大大削减,它可能只是在某一些场景会有好的效果。因此,需要针对用户具体的问题使用不同的方法,知识库会作为基石,但上面需要叠加很多的不同技术。

    爱分析:机器是没有常识的,云问 科技 这边有什么解决方式?

    王清琛: 随着技术的进步,未来一定会有相应的产品出现。我们也会构建,主要依靠知识库的积累,现有的数据来源比如有FAQ的数据,非结构化的文档资料,结构化的数据,通过NLP技术也可以快速的搭建针对问答的一套知识库。未来,将会去做知识库的自动理解和自动构建,这也是我们一直核心研发的智能辅助型的工具。

    爱分析:多轮对话会是技术难度更高的一个点吗?

    王清琛: 多轮对话的复杂度高,相对来说难度点是既能实现不同场景的多轮对话,又能满足高度定制化的需求。单纯的多轮对话技术难度不是很难,主要把各项NLP技术做一个综合的融合,就能解决这些问题。所以具体环节的落地更多的是工程化的工作,只做纯技术不结合业务还是不太适用。

    目前我们能够完成10-20轮之间的多轮对话。

    爱分析:去年google开源bert技术,会对行业会产生什么影响?

    王清琛: 我们其实已经在逐步看到bert在行业内的影响力,云问目前已经在开展这方面的 探索 ,初见成效,相信未来bert潜力无限。

    爱分析:云问 科技 未来的发展规划是什么?

    王清琛: 主要还是一点:AI变革企业服务全链条,包括企业的对内服务以及对外服务各个环节。

    我们将侧重于深耕客服机器人在各个行业的业务场景、机器人理解的能力、以及是否能给企业创造更多的价值。现在我们已经安排业务人员对各个行业进行深入的调研,了解各个行业的痛点。我们也将制定全链条全环节智能化的解决方案。

    爱分析:云问 科技 下一步往企业内部延伸,具体打算怎么做?

    王清琛: 我们会和一些大型的企业,包括美的、海尔等,做一些深入的探讨,方向包括企业内部IT场景等。我们接触的很多客户都是大型客户,他们的业务数据异构程度、应用场景都比较高,这个会导致定制化产品比较重,所以我们把软件做了一个很好的分层,对于未来发展方向并没有限制。

    爱分析:在多维表格方面,云问 科技 和一些金融公司做的方向是一样的吗?

    王清琛: 我不太评价别人是怎么做的,我们是基于知识场景出发,去做表格理解、解读的能力。基于NLP技术,针对表格做一些深入化的理解和产品功能的提炼。

    爱分析:云问 科技 后续会提供质检系统、销售系统等吗?

    王清琛: 会的,只是目前我们主要精力还不会放在这些方面。

    爱分析:云问 科技 会考虑NLP应用在其他场景吗?

    王清琛: 我们会考虑做一些行业的定制深入优化,通用性不会那么多。今年云问已经成立了某些行业的业务线,做这些行业的深入挖掘和深度定制。

    我们下个阶段可能会探讨NLP在保险、公共事业服务、交通物流等场景的产品落地。

    AI智能语音机器人哪家好?

    AI语音机器人品牌有很多天下快富电话机器人,像容联、七陌等厂商天下快富电话机器人的产品功能丰富、系统稳定,性价比比较高,具体您可以跟天下快富电话机器人他们咨询下。

    AI智能语音机器人可以充当一个中间媒介。可以代替人类与客户进行智能化的语音交流。在客户需要与商家进行直接交流沟通时将电话转接,避免了因商家没及时注意电话,而错失客户。

    智联是值得信赖的信息技术公司。容联以云化和智能化的方式,为企业客户提供全面的通讯服务。包括PaaS通讯能力(语音、短信等)、CC(云客服与云联络中心)、UC(IM即时通讯云、融合通讯、视频与会议)、行业新通讯解决方案和“通讯+AI”服务,助力企业提高沟通体验和经营效率,驱动中国企业通讯产业实现互联网化、云计算化、能力化、融合化和智能化。

    电销机器人效果如何?

    随着人工智能技术的发展,新型渠道的服务能力也有进一步的提升。基于人工智能的智能客服帮助各类企业解决了以往需要人工参与才能完成的部分服务工作,进一步解放了企业的人力成本,是目前新型客服方式的典型代表。

    目前智能客服的应用方式有三种:在线智能客服、热线端智能客服、实体客服机器人。热线端智能客服、实体客服机器人两种方式比在线智能客服多了语音处理的一步,虽然目前语音识别技术发展相对成熟,但各类方言和口音问题还是会给语音内容识别的准确率带来一定影响,而在线智能客服多数直接文字输入,目前应用相对广泛,因此以下探讨的内容主要以文字输入的智能客服方式为基础。

    虽然智能客服应用比较火热,很多大型企业也已经搭建或正在尝试搭建智能客服应用体系,但通过一些企业用户的反馈,我们也发现目前仍存在一些问题。

    1、 对客户需求理解的准确度。

    目前企业所用的智能客服系统普遍用于业务解答,系统的开发模式主要基于企业的知识库,采用关键字匹配来推荐答案,这种方式虽然直接,但其实没有很好地考虑到客户的提问习惯。对于普通客户而言,发问一般以相对口语化的方式进行,而系统则一般以结构化的语言去读取,在客户自然语言和计算机结构化语言之间必然需要一定的机制去做好翻译工作,例如客户的口语化提问方式、上下文智能关联等,但目前大多数智能客服处理这类问题的能力并不强,客户提问的内容一旦比较复杂或表达不完整,系统就无法完整、正确识别客户问题,导致目前一些智能客服应用在实际使用过程中推荐答案的准确率并不高,从而影响客户的使用体验。客户采用在线问答的模式无非是希望尽可能简便地获取自身关注的业务内容,如果多次都得不到需求满足,久而久之就会放弃这种服务模式,那么企业实现服务分流的初衷也会达不到预想的目标。

    2、 单一服务模式

    人工服务的最大优点就是灵活和具备思考能力,不仅能解决客户的基本需求,还能推动挖掘客户的潜在需求,结合客户的变化来改变服务策略,在良好的互动中完成更多的工作任务。而据我们了解,当前的智能客服应用都只关注解决客户的提问需求,几乎没有考虑到如何主动去了解、分析和发掘客户的潜在需求。实际上在对话过程中,从客户文字信息可以反映出客户的某些情绪表现、产品需求甚至是对服务的评价态度,但现有的智能客服应用大多数都没有去关注客户提问的内容以外的其他信息,没有真正做到智能地收集客户信息并做出合适的判断和推荐。

    3、 系统自我学习和进步的缺乏

    系统自学习包括业务上的学习和技术上的学习。在业务的自学习方面,随着业务和客户需求的变化,客户关注的内容也会更新变化。前面提到当前的智能客服系统基本以企业知识库为基础来开发,这可能会存在两个问题,一是企业知识的补充或更新一般都是在新政策新业务需求非常明确的情况下才会做进一步梳理和更新,管理流程比较复杂,操作周期较长;另外一个就是客户的问题有可能会超过知识库回答的范围,此时系统就无法给出准确的答案。由于客户对于新业务的感知却往往要比企业内部的管理流程走得更快,了解的期望也会更加迫切,如果当客户已经在广泛关注新产品新业务的问题时企业无法及时获得信息和更新,可能会导致一些营销机会的流失,这时如果智能客服系统能及时捕捉新的业务关注点、及时提醒管理人员及时更新业务知识或给予一定的业务引导,将能够更好地提高用户的服务体验。技术上的学习主要跟系统的推荐算法相关,作为智能客服系统的核心算法,目前大多数智能客服系统在算法的优化更新方面的速度非常缓慢,有些甚至几乎就不更新,根本没有考虑到随着需求变化去进行实现系统自身算法参数上的调整以便及时优化自身推荐机制、提高推荐准确率。

    上述问题是我们目前对于智能客服应用发展的一些看法,综合国内目前技术的发展趋势以及我们的研究和经验,建议可以考虑从以下几个方面来推动智能客服应用的优化建设,更好地落实智能客服在企业的应用价值。

    1、 在技术层面,完善系统技术应用,让系统更智能

    建立智能客服系统不单单只是IT建设的问题,如果还停留在用传统IT的思维模式去做机械化的分词、关键字搜索、匹配,这样的方式远远谈不上智能。IT只是实现系统的一种手段,真正的智能客服是集合人工智能学、计算机科学、语言学等多门学科的综合应用,而所谓的智能应该是能让机器主动去认知和学习,不断强化行为模式,提高思考能力,从而更加灵活地完成各项工作任务。从这个层面上来说,企业如果要投入做智能客服,还是要把更多的精力放在人工智能相关的各种数据挖掘、机器学习、深度学习的算法研究上,这才是体现智能的核心技术。如何去做,可以从以下两个方面考虑。

    (1) 让系统听懂人话是智能客服的基础。

    要做到让客户感觉与智能客服的对话跟人工客服没有差异并不容易,这取决于系统是否能够适应客户提问方式的随意性。智能服务的基础核心技术是自然语言处理,它通过对自然语言进行分词、分析、抽取、检索、变换、翻译等工作而让计算机快速理解自然语言表达的意图并准确地反馈用户所需信息,因此如果要提高的系统的理解能力,还是要更加充分地利用自然语言处理技术中如语义分析、情感分析、上下文关联等技术而不单只是切词匹配,这样在应对客户多样化的提问时才能更加准确地判断客户需求并提供最佳答案。

    (2) 实现系统的自我学习是智能客服的发展趋势

    机器学习、深度学习等相关技术目前已经不是实验室理论,不少领域都有一些应用的探索和研究,难度只在于如何跟实际的业务关联起来并可以投入实际生产使用。企业在建设智能客服的过程中可以多投入精力和技术资源在这方面的研究,让系统实现自我学习和优化,才能真正体现智能客服的意义。

    2、在业务层面上,要提高与业务的结合度

    这体现在三个方面,一个是能基于业务流程、业务特点等来调整系统的计算流程和算法,让系统更加契合不同企业的特点,提高推荐精准度。

    第二个是业务知识的积累。业务知识包括知识库和行业的专业词典,知识库是智能客服的服务基础,专业词典则是影响智能客户认知的因素之一。由于不同企业知识库的管理流程并不相同,更新完善的周期也不一样,所以在这方面主要还是考虑如何结合上述提到的自学习机制来及时获取新业务关注点,提醒企业管理人员更新知识库信息。而在专业词典方面因为是系统识别业务知识点的关键因素,因此同样需要及时更新维护,这不仅要靠系统的自学习提醒,同时也要依赖人工维护。传统的智能客服系统对于词典的管理都是“黑盒管理”模式,一般都是企业提出需求,系统的开发厂商去维护更新,这样的流程比较繁琐,如果可以直接提供可视化的词典管理界面,由企业用户自己去维护,知识的更新效率会更高。

    最后一个就是要更多地去融合企业的业务分析成果,提高智能客服系统的综合业务能力。实际上对数据的重视和应用已经成为不同领域和行业的默契,很多企业都已经开始了结合业务需求的数据挖掘分析工作,类似建立精准营销识别、客户服务满意度预测、客户投诉倾向判断等应用模型。这些模型成果目前在客服方面应用较多的模式就是推荐给热线客服,作为提醒客服的信息。同样的,这种方式放在智能客服的应用上也同样适用,例如可以利用企业的客户画像体系在服务过程中结合不同客户标签采取不同服务模式;或者结合产品精准营销模型嵌入到智能客服系统,在交互过程中及时捕捉客户意向、把握营销机会。当然,这种模式的真正开展并非十分容易,毕竟不是简单地直接应用现有分析成果,而是要融合当前的对话内容去提供实时分析,如果企业本身或服务的厂商在数据挖掘分析领域的积累不是特别深的话,也很难取得比较好的效果。

    智能客服不会是一时兴起会快速幻灭的应用方向,人工成本的不断高涨以及对服务效率和质量要求的提高只会推动这种服务模式更加智能化和多功能化,随着语音识别、图像识别、机器人应用等上下端技术的日趋成熟,相信智能客服会在服务领域真正地大放异彩。

    小笨智能客服

    服务类的智能机器人在哪能买到

    服务类天下快富电话机器人的机器人是现代科技的一个结晶天下快富电话机器人,它是根据人们心中最理想的性伴侣而设计的。它是一种人工智能机器人装置,能够通过大脑引发实际的身体反应,或者让人在大脑中有一种完全的性感觉,这种性体验是安全的,没有性混乱和性传播疾病的危险。通过这种技术,人类可以得到性提高。科学家表示,即使发明这种技术的人也不会认为这种技术能够完全代替人类的联系或者性交,这种技术只是一个补充。这种机器人在淘宝,京东都可以买得到。

    天下快富电话机器人的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、天下快富电话机器人的信息别忘了在本站进行查找喔。

    上一篇:自动外呼系统原理(智能外呼机器)
    下一篇:泰安智能外呼系统(泰安智能外呼系统招聘)
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    天下快富电话机器人的简单介绍 天下快富电话机器人,电销机器人,电话机器人,智