打电销用什么电销卡?打电销用的电销卡办理联系主页电话!
应用场景市场空间广阔,全球市场格局未定。受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到 360.5 亿元,约是技术层的 1.67 倍,基础层的 2.53 倍。在全球范围内,人工智能仍处在产业化和市场化的探索阶段,落地场景的丰富度、用户需求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有主导权的垄断企业,在很多细分领域的市场竞争格局尚未定型。
中国侧重应用层产业布局,市场发展潜力大。欧洲、美国等发达国家和地区的人工智能产业商业落地期较早,以谷歌、亚马逊等企业为首的科技巨头注重打造于从芯片、操作系统到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国人工智能市场Z为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比。据艾瑞咨询统计,2019 年,国内 77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大华股份分别占据全球智能安防企业和第四名。
整体来看,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。
透析人工智能发展潜力
基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。
从智能产业基础的角度
产业化程度:增长强劲,产业规模仅次美国
中国人工智能尚在产业化初期,但市场发展潜力较大。产业化程度是判断人工智能发展活力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能市场规模分别是 213、71.25 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度,据清华大学科技政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的增长态势,发展潜力较大。
专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申请量占全球总申请量的 73.95%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出量首超美国,并长期雄踞申请量首位。
从专利申请领域来看,深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 )、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技热潮兴起后申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁荣的结构性不均衡问题。
从专利权人分布来看,中国高校和科研机构创新占据主导地位,或导致理论、技术和产业割断的市场格局。欧美日人工智能申请人集中在企业,IBM、微软、三星等巨头企业已构建了相对成熟的研发体系和策略,成为专利申请量Z多的专利人之一。其中,IBM 拥有专利数量全球遥遥领先,截至 2018 年 12 月 31 日,共拥有 4079 件 AI 专利。而中国是全球的大学和研究机构 AI 专利申请高于企业的国家。由于高校与企业定位与利益追求本质上存在差异,国内技术创新与市场需求是否有效结合的问题值得关注。
中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少,仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示,受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效,而美国 85.6%的专利仍能得到有效保留。
人才储备:供需失衡人才缺口大
人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 61.8%。欧洲 28 国拥有 43064 名人工智能人才,位居全球,占全球总量的 21.1%。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 2.26 倍,基础层人才数是中国的 13.8 倍。
我国人工智能人才供需严重失衡,杰出人才缺口大。据 BOSS 直聘测算,2017 年国内人工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰出人才(977 人)比例仍明显偏低,不足欧美的 1/5。
人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看,国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的大来源大国,占所有回流中国人才比重的 43.9%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。