呼叫中心一路走来,就算以美国或欧洲的角度来看,都只有30年不到的历史,是一个很短的历程,大部分的管理理论都很不成熟,借镜于其它产业的管理理论,却发现这些理论不完全适用于呼叫中心。
其中一个最严重的管理难题就是,其它产业高度仰赖的平均值管理,到呼叫中心突然发现不灵光了。
平均值管理有什么问题?
我们先看几个例子。
我在1990年在美国待了相当长一段时间,当时看到美国加州有一个郡的郡长发布了一个新闻稿,说他们郡的人均收入比前一年同期大幅提升了不少,新闻稿的用意很明显,就是要表现这个郡长所做的功绩。
人均收入提高,是不是一个很值得大书特书的政绩?人均收入提高,听起来这个郡的居民收入提高了,大家应该都过的更好了。
但当地报纸显然不买帐,写了篇文章去讥讽郡长,说郡长大人,本郡人均收入提高,是因为有一个人搬进了本郡啊,这个人就是比尔盖兹先生。
比尔盖兹先生搬到了这个郡,人均收入当然会大幅提升,可能还提升了几十倍不止,但这个郡的其它居民的收入有提升吗?这个郡的人均收入提升,跟其它居民有关系吗?
我最近上课,常常会讲一个脑筋急转弯,有一个城市(叫做城市甲吧)人均收入是一万,城市乙的人均收入是8千,有没有什么办法可以仅仅靠着把城市甲的一群人搬到城市乙,然后两个城市的人均收入同时都会增加?
这答案很简单,就是把收入在一万到8千的居民,从城市甲搬到城市乙,两个城市的人均收入都会同时提高。
是的,只要把收入在一万到8千的居民,从城市甲搬到城市乙,两个城市的人均收入都会同时提高,因为城市甲的人均收入是一万,而这些收入在一万到8千的居民,因为收入低于人均收入,所以如果搬走,人均收入自然就会提高。而城市乙的人均收入是8千,这些居民的收入高于城市乙的人均收入,这些人搬进来,城市乙的人均收入自然就会上升。
仅仅靠着把这些居民从城市甲搬到城市乙,这两个城市的人均收入都会同步提高,但请问,这两个城市有做了任何的努力吗?还是说这两个城市都只是在玩数字游戏而已?
我再举一个更令人困惑的例子来说明平均值这个数字的矛盾性。
大家觉得有没有可能两个座席员,过去8、9、10三个月的质检平均分数,座席员甲是高于座席员乙的,而11月这个月的质检平均分数,座席员甲还是高于座席员乙的,但是如果把这四个月的分数放在一起重新统计,突然座席员乙的平均分数却高于座席员甲?
我再说一次,有没有可能,过去8、9、10三个月的质检平均分数,座席员甲高于座席员乙,11月这个月的质检平均分数,座席员甲还是高于座席员乙,但是把这四个月的分数放在一起重新统计,突然座席员乙的平均分数却高于座席员甲?
应该不可能吧,8、9、10三个月座席员甲的平均分数都高于乙,11月甲还是高于乙,怎么可能把四个月的分数放在一起平均,乙却高于甲呢?
万一有这种可能,那我们过去在计算质检平均分数的时后,不是全乱了套了吗?
甲的平均分数一直都高于乙,怎么可能把分数放在一起统计,却出现了大逆转呢?
如果这有可能,那到底是甲比较好,还是乙呢?
还是我们根本无法辨认谁比较好呢?
我用下面这个例子来说明这真的是有可能的:
| | 抽听数 | 合格数 | 合格率 |
8、9、10三个月 | 甲座席员 | 40 | 36 | 0.90 |
| 乙座席员 | 100 | 86 | 0.86 |
11月 | 甲座席员 | 20 | 13 | 0.65 |
| 乙座席员 | 8 | 5 | 0.63 |
四个月累计 | 甲座席员 | 60 | 49 | 0.82 |
| 乙座席员 | 108 | 91 | 0.84 |
上面这张表,把甲和乙两位座席员过去8、9、10三个月的质检分数列了出来,大家可以看到,座席员甲被抽听了40通,其中合格数是36通,显然合格率是90,而座席员乙被抽听了100通,合格数是86,合格率是86。
过去8、9、10三个月的质检合格率,座席员甲显然是高于座席员乙的。
到了11月,座席员甲被抽听了20通,合格数是13通,合格率是65,而座席员乙被抽听了8通,合格数是5通,合格率是63,11月的的质检合格率,座席员甲显然又是高于座席员乙的。
但如果我们把这四个月的成绩放在一起统计,我们会看到一个令人非常困惑的情况:四个月的累计,座席员甲被抽听了60通,合格数是49,合格率是82,而座席员乙被抽听了108通,合格数是91,合格率却是84!
座席员乙的合格率突然高于座席员甲!
你没有听错,而我没有讲错,大家仔细的详细看看上面这表格的计算,是的,我没有算错,分开来看,座席员甲都领先座席员乙,但放在一起统计,座席员甲却输给了座席员乙!
平均值的计算,是要非常小心的,当你抽听的通数不一样,而两次的平均值差异又过大(甲原来合格率是90,11月掉到了65),这时平均值就可能会出现上面这种可笑的情况。
我常常拿下面这两个例子来说明在呼叫中心平均值的计算,是拿来罚钱,而不是拿来管理的。管理是需要不断的问为什么,而平均值看不到个体差异,问不出为什么这三个字。
先看第一张图:
这是两个呼叫中心从早上8点开始,一直到晚上6点,每隔半个小时的服务水平。可以很清楚的看到,蓝色这条线,它服务水平在91到48这中间震荡,平均服务水平是73左右,粉红色这条线,虽然平均服务水平也是在73左右,但震荡幅度却小了很多,服务水平只在81到68这中间震荡。
要请问的是,大家觉得哪一个呼叫中心的管理比较好?
你会觉得这两个呼叫中心的管理一样好吗?
我们来看看另外一张图,这是从通话利用率来看(就是座席员一天的通话时长除以该座席员一天的签入时长):
这是两个座席员每天的通话利用率,横轴是这个月从月初到月末,纵轴是通话利用率,蓝色这位的平均通话利用率在70左右,粉红色这位的平均通话利用率也是在70左右,但上下震荡的很厉害,月初表现的很好,但从月中开始,通话利用率就一直明显的下降。
如果是从平均数来看,这两个座席员的通话利用率平均都是70,都是一样。但两个人的表现真的是一样吗?
呼叫中心过去主要的管理手段,我们称为平均法,利用平均表现来进行考核。
例如某座席员这个月的通话利用率是否有达标,就是看这个月里面,每一天的通话时长进行加总,然后除以这个月这个座席员的签入总时长。
平均法的最大问题,就是只能看到平均,而看不到差异。
通话利用率这张图是某个呼叫中心真实的故事,它的座席员每个月有固定的接听总通数这个指标必须达成,在月初时,座席员就拼命接电话,到了月末,接听通数的指标达成了,大家就开始拼命的小休,通话利用率就大幅的下降,造成通话利用率是月初高,月末低的情况。
这是你要的绩效管理效果吗?
如果你只看平均数,你可以看出这个问题吗?
追求差异的缩小,是最小方差管理法最重要的精神,而最小方差管理法用来测量差异最重要的测量工具就是:
标准差和离散系数
如何使用标准差和离散系数,我在前几期的文章中写得相当详细,现在大约再说明一次。
标准差计算方法很简单,在EXCEL里面,只要利用“STDEV”函数,选中你要计算标准差的数列,如下图,我们要计算7月1号到30号平均处理时长的标准差,7月1号到30号平均处理时长的数据,就是B2到B31这数列,只要选中这数列,按“确定”,就会得出标准差。
如我们之前几篇关于最小方差管理法的文章所说,平均数看不到个体差异,只知道7月1号到30号的平均处理时长是99.5秒,但这数字对管理者而言,其实是没有办法用来做管理的,因为管理者要做的是找出差异,管理差异,而标准差才是可以提供个体差异这重要信息的工具。
但每一次计算平均值,因为采用的天数可能不一样,或是采用了不同的班组来检查,平均值都可能会不一样的,这时如果只是用标准差来做互相之间的比较,就会产生不公平的情况,所以将标准差除以平均值,得出一个系数,就称为离散系数。
离散系数是一个最重要的控制指标,最小方差管理法大量使用离散系数来测量某一个KPI指标是否已经达标。
最小方差管理法把离散系数分成四个等级:
稳定 0.1
控制 < 0.16
失控 > 0.16
严重失控 > 0.8
有了这四个等级,呼叫中心的差异管理,有了明确的界定,只要你把某个KPI指标的离散系数计算出来,你就知道自己目前的差异状况是在稳定,还是控制,或是失控中了。
这是一个非常重要的观念,质量管理之父戴明是一位改造了日本的质量大师,他却是一位美国人,本来在1950年到1960年,日本制就等于是劣质货、黑心货的代名词,日本以廉价但质量差的产品大量倾销美国,让美国人非常鄙视,但到了1980年,美国最大的电视台NBC制作了一套震撼美国人的节目,节目名称就是[为何日本能,而美国不能!],因为到了1980年代,美国人赫然发现日本制产品的质量,远远超过了美国货,全世界都开始买日本车,买日本家电,质量尽然超过了一直在帝国大梦中的美国,而改造了日本的这位大师,就是戴明。
可惜国内目前很少戴明的书,戴明对我的影响非常的大,他的理论最重要的核心思想就是:
管理企业,首先要让关键指标进入控制状态,不然所有的管理手段都是无效的!
也就是说,必须首先测量关键指标是否在控制状态,如果不是,首先要让事情进入控制状态,不然就算你采取再多的改善措施,都是这里失火,这里救火,那里失火,那里救火,为何这里那里会到处失火,却没有找出问题的源头,只是在事情的最末端进行亡羊补牢的补救措施而已。
最小方差管理法认为差异管理最重要的,就是首先进行关键指标的离散系数测量,测量关键指标目前的控制情况。
如果指标是在失控状态(离散系数大于0.16),最小方差管理法藉用两个关键图来找出差异的来源,这两张图一个是常态图,另外一个是控制图。
常态图的画法可以参考我前面一篇文章『Excel2007对呼叫中心管理产生的革命性影响』当中,有详细介绍怎么用Excel来画常态图。
下面这张图是某呼叫中心平均处理时长的常态图,我们希望常态图是一个高峰,这代表只有一股力量在里面,如果出现了两个以上的高峰,就代表有两股以上的力量在里面,差异被这两股以上的力量给拉开了。
在下面这张图中,我们看到大部分人的平均处理时长是5分钟左右,但在8分钟这里,又出现了一个小高峰,甚至在10分钟这里,出现了第三个小小高峰。
常态图可以帮助我们在指标失控时,看到这指标有几股力量在里面,针对第二和第三个高峰应该要采取适当的手段来改善情况。
换句话说,看常态图的重点,就是看有几个高峰,我们希望看到的理想情况是一个高峰,但只要指标是失控的,通常一定会看到两个以上的高峰。
常态图也轻易可以看出长尾来,长尾理论最近在互联网变成一个影响很大的理论,就是由网民共同创造的网站(例如小区网站)虽然网民力量小,但却是真正互联网将来的主流方向。
但在差异管理中,长尾却是你最不想看到的,在下面这张图中,右边显然出现了一条长尾。
控制图是差异管理中最关键的一张图,我在下一期在专门来谈。