• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    一次关于Redis内存诡异增长的排查过程实战记录

    一、现象

    实例名:r-bp1cxxxxxxxxxd04(主从)

    问题:一分钟内存上涨了2G,如下图所示:

    键值规模:6000万左右

    内存一分钟增长2G.png

    二、Redis内存分析

    1. 内存组成

    上图中的内存统计的是Redis的info memory命令中的used_memory属性,例如:

    redis>infomemory#Memoryused_memory:9195978072used_memory_human:8.56Gused_memory_rss:9358786560used_memory_peak:10190212744used_memory_peak_human:9.49Gused_memory_lua:38912mem_fragmentation_ratio:1.02mem_allocator:jemalloc-3.6.0 

    每个属性的详细说明

    属性名 属性说明
    used_memory Redis 分配器分配的内存量,也就是实际存储数据的内存总量
    used_memory_human 以可读格式返回 Redis 使用的内存总量
    used_memory_rss 从操作系统的角度,Redis进程占用的总物理内存
    used_memory_peak 内存分配器分配的最大内存,代表used_memory的历史峰值
    used_memory_peak_human 以可读的格式显示内存消耗峰值
    used_memory_lua Lua引擎所消耗的内存
    mem_fragmentation_ratio used_memory_rss /used_memory比值,表示内存碎片率
    mem_allocator Redis 所使用的内存分配器。默认: jemalloc

    计算公式如下:

    used_memory = 自身内存+对象内存+缓冲内存+lua内存used_rss = used_memory + 内存碎片

    如下图所示:


    2. 内存分析

    (1) 自身内存:一个空的Redis占用很小,可以忽略不计

    (2) kv内存:key对象 + value对象

    (3) 缓冲区:客户端缓冲区(普通 + slave伪装 + pubsub)以及aof缓冲区(比较固定,一般没问题)

    (4) Lua:Lua引擎所消耗的内存

    3. 内存突增常见问题

    (1) kv内存:bigkey、大量写入

    (2) 客户端缓冲区:一般常见的有普通客户端缓冲区(例如monitor命令)或者pubsub客户端缓冲区

    三、问题排查

    (1) bigkey ? 经扫描未发现bigkey

    Sampled 67234427 keys in the keyspace!
    Total key length in bytes is 1574032382 (avg len 23.41)
    
    Biggest string found 'CCARD_DEVICE_CARD_REF_MAP_KEY_016817000004209' has 20862 bytes
    Biggest list found 'CCARD_VALID_DEVICE_TRAIN_QUEUE_KEY' has 51 items
    Biggest hash found 'CCARD_VALID_DEVICE_TRAIN_MAP_KEY' has 51 fields
    
    67234359 strings with 71767890 bytes (100.00% of keys, avg size 1.07)
    67 lists with 151 items (00.00% of keys, avg size 2.25)
    0 sets with 0 members (00.00% of keys, avg size 0.00)
    1 hashs with 51 fields (00.00% of keys, avg size 51.00)
    0 zsets with 0 members (00.00% of keys, avg size 0.00)

    (2) 键值个数增加?未发现键值有明显变化


    (3) 客户端缓冲区

    由于内存增上去后,长时间没下落,如果是因为缓冲区问题,会从info clients找到明显问题,执行后发现:

    redis> info clients
    # Clients
    connected_clients:43
    client_longest_output_list:0
    client_biggest_input_buf:0
    blocked_clients:0
    admin_clients:6
    rejected_vpc_conn_count:0
    close_idle_unknown_conn_count:0

    执行client中也没有明显的omem大于0的情况

    id=80207addr=10.xx.0.4:63920fd=46name=age=624idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80215addr=10.xx.0.23:43489fd=36name=age=591idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80366addr=10.xx.0.8:59785fd=18name=age=84idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=delread=0write=0type=user
    id=80356addr=10.xx.0.33:32117fd=13name=age=114idle=0flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80064addr=10.xx.59.4:53446fd=38name=age=1070idle=1070flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=NULL read=0write=0type=admin
    id=80276addr=10.xx.0.23:48511fd=8name=age=387idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80188addr=10.xx.0.33:16265fd=42name=age=681idle=3flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80326addr=10.xx.0.32:59779fd=16name=age=209idle=0flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80065addr=10.xx.59.4:53447fd=45name=age=1070idle=1070flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=NULL read=0write=0type=admin
    id=79936addr=10.xx.0.22:10607fd=30name=age=1480idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80174addr=10.xx.0.5:60914fd=6name=age=722idle=2flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80300addr=10.xx.0.22:22757fd=48name=age=298idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80037addr=10.xx.0.5:55189fd=15name=age=1143idle=2flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80330addr=10.xx.0.8:48533fd=17name=age=199idle=10flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=79896addr=10.xx.0.30:26814fd=11name=age=1616idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80299addr=10.xx.0.24:11227fd=44name=age=303idle=3flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80086addr=10.xx.0.32:52526fd=40name=age=1002idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80202addr=10.xx.0.33:16658fd=26name=age=636idle=3flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80256addr=10.xx.0.24:60496fd=19name=age=448idle=2flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=79908addr=10.xx.0.29:18975fd=12name=age=1583idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80365addr=10.xx.0.29:46429fd=14name=age=85idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=79869addr=10.xx.27.4:48455fd=35name=age=1700idle=1700flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=NULL read=0write=0type=admin
    id=80334addr=10.xx.0.23:50012fd=39name=age=189idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80041addr=10.xx.0.32:51107fd=33name=age=1132idle=3flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=79992addr=10.xx.0.22:12068fd=28name=age=1289idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80251addr=10.xx.0.30:44213fd=23name=age=468idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80006addr=10.xx.0.2:45895fd=31name=age=1242idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80321addr=10.xx.0.30:48048fd=5name=age=224idle=3flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80381addr=10.xx.0.8:13360fd=22name=age=24idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=delread=0write=0type=user
    id=80200addr=10.xx.0.24:59183fd=24name=age=640idle=0flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80113addr=10.xx.0.2:52492fd=21name=age=915idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=174addr=11.216.117.242:53027fd=9name=age=281390idle=0flags=S db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=replconf read=0write=0type=admin
    id=79991addr=10.xx.0.4:48412fd=25name=age=1296idle=0flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80301addr=127.0.0.1:47869fd=49name=age=291idle=261flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=strlen read=0write=0type=admin
    id=80047addr=10.xx.59.4:53184fd=41name=age=1114idle=1114flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=NULL read=0write=0type=admin
    id=80236addr=10.xx.0.5:62546fd=47name=age=516idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80364addr=10.xx.0.4:18794fd=7name=age=85idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80175addr=10.xx.0.4:62245fd=29name=age=718idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80336addr=10.xx.0.29:45701fd=50name=age=180idle=1flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80050addr=10.xx.59.4:53188fd=43name=age=1114idle=1114flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=NULL read=0write=0type=admin
    id=79765addr=10.xx.0.2:33832fd=37name=age=2027idle=177flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=info read=0write=0type=user
    id=80170addr=10.xx.0.2:57853fd=20name=age=728idle=24flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=0obl=0oll=0omem=0events=r cmd=ping read=0write=0type=user
    id=80390addr=127.0.0.1:49449fd=27name=age=0idle=0flags=N db=0sub=0psub=0multi=-1qbuf=0qbuf-free=32768obl=0oll=0omem=0events=r cmd=client read=0write=0type=admin

    四、揪出元凶

    常用的几招都用了,还是不行,同事@径远帮忙一起分析,怀疑是不是因为Redis的kv哈希表做了 rehash。

    1. Redis的kv存储结构

    如下图所示,Redis的所有kv保存在dict中,其中ht对应两个哈希表ht[0]和ht[1],平时一个空闲,一个用于存储数据,只有当需要rehash时,ht[1]才会用到。


    2. Redis的字典rehash

    为了保证哈希表的负载,当哈希表的元素个数等于哈希表槽数时候,会进行rehash扩容。扩容后h[1]的容量等于第一个大于等于ht[0].size*2的2n,例如hash表的初始化容量是4,那么下一次扩容就是8,以此类推。

    3. 测试

    (1) 测试方法

    先批量写入到rehash阈值附近,然后在逐条去写,观察内存变化

    // 为每个键设置1天过期时间
    int expireTime = 60 * 60 * 24;
    // rehash阈值 - 50为了方便观察rehash内存变化
    int rehashThreshold = (int) Math.pow(2, 25) - 50;
    
    // 1.批量写入:pipeline批量写入,由于是本机测试,这里用10000,实际生产不要这么用
    Pipeline pipeline = jedis.pipelined();
    pipeline = jedis.pipelined();
    for (int i = 0; i  rehashThreshold; i++) {
      pipeline.setex(String.valueOf(i), expireTime, String.valueOf(i));
      if (i % 10000 == 0) {
        pipeline.sync();
      }
    }
    pipeline.sync();
    
    // 2.等待写增量
    TimeUnit.SECONDS.sleep(5);
    for (int i = rehashThreshold; i  rehashThreshold + 200; i++) {
      jedis.setex(String.valueOf(i), expireTime, String.valueOf(i));
      TimeUnit.SECONDS.sleep(1);
    }

    (2) 开始测试

    (a) 当阈值=215=32768,从下面可以看出到key的个数为32769时,内存涨了一些,但是还不明显。

    ​keys       mem      clients blocked requests            connections32766      4.69M    3       0       32797 (+2)          4
    32767      4.69M    3       0       32799 (+2)          4
    32768      4.69M    3       0       32801 (+2)          4
    32769      5.44M    3       0       32803 (+2)          4

    (b) 当阈值=220=1048576,从下面可以看出到key的个数为1048577时,内存涨了32M。因为rehash会扩容,所以新的哈希表中的槽位变为了221 * 2(因为每个key都设置了过期时间,expires表),指针为8个字节,221 ? 2 ? 8 = 225 = 32MB。

    ​keys       mem      clients blocked requests            connections1048574    128.69M  3       0       3364129 (+2)        16
    1048575    128.69M  3       0       3364131 (+2)        16
    1048576    128.69M  3       0       3364133 (+2)        16
    1048577    160.69M  3       0       3364135 (+2)        16
    1048578    160.69M  3       0       3364137 (+2)        16

    (c) 当阈值=226=67108864,从下面可以看出到key的个数为67108865时,内存涨了2GB。因为rehash会扩容,所以新的哈希表中的槽位变为了227 * 2(因为每个key都设置了过期时间,expires表),指针为8个字节,227 ? 2 ? 8 = 231 = 2GB。

    ​keys       mem      clients blocked requests            connections67108862   9.70G    3       0       70473683 (+2)       18
    67108863   9.70G    3       0       70473685 (+2)       18
    67108864   9.70G    3       0       70473687 (+2)       18
    67108865   11.70G   3       0       70473689 (+2)       18
    67108866   11.70G   3       0       70473691 (+2)       18
    67108867   11.70G   3       0       70473693 (+2)       18

    回过来看r-bp1c15fd9b142d04的key和内存变化图,可以发现上面的规则是正确的:

     

    4. 后续观察

    17点时,rehash结束,内存降了增加的2G的一半。


    五、总结

    由于哈希表的特性,Redis 中键值数量大,不会对存取造成性能影响,但是会出现本文提到的问题。控制键个数有几个建议:无用的键值设置过期时间或者定期删除。优化键值设计:例如可以使用 ziplist hash合并优化部分字符串类型。未来改进:内核层面支持 rehash 的审计日志以及增强 rehash 的速度。

    好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

    您可能感兴趣的文章:
    • redis内存空间效率问题的深入探究
    • redis 限制内存使用大小的实现
    • redis 使用lettuce 启动内存泄漏错误的解决方案
    • 浅谈内存耗尽后Redis会发生什么
    • 浅谈redis内存数据的持久化方式
    • 内存型数据库Redis持久化小结
    • 降低PHP Redis内存占用
    • Redis教程(十四):内存优化介绍
    • 详解Redis瘦身指南
    上一篇:Windows环境下Redis Cluster环境搭建(图文)
    下一篇:为啥懒 Redis 是更好的 Redis
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    一次关于Redis内存诡异增长的排查过程实战记录 一次,关于,Redis,内存,诡异,