• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    分区表场景下的 SQL 优化

    导读

    有个表做了分区,每天一个分区。

    该表上有个查询,经常只查询表中某一天数据,但每次都几乎要扫描整个分区的所有数据,有什么办法进行优化吗?

    待优化场景

    有一个大表,每天产生的数据量约100万,所以就采用表分区方案,每天一个分区。

    下面是该表的DDL:

    CREATE TABLE `t1` (
     `id` bigint(20) NOT NULL AUTO_INCREMENT,
     `date` date NOT NULL,
     `kid` int(11) DEFAULT '0',
     `uid` int(11) NOT NULL,
     `iid` int(11) DEFAULT '0',
     `icnt` int(8) DEFAULT '0',
     `tst` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
     `countp` smallint(11) DEFAULT '1',
     `isr` int(2) NOT NULL DEFAULT '0',
     `clv` int(5) NOT NULL DEFAULT '1',
     PRIMARY KEY (`id`,`date`),
     UNIQUE KEY `date` (`date`,`uid`,`iid`),
     KEY `date_2` (`date`,`kid`)
    ) ENGINE=InnoDB AUTO_INCREMENT=3180686682 DEFAULT CHARSET=utf8mb4
    /*!50500 PARTITION BY RANGE COLUMNS(`date`)
    (PARTITION p20161201 VALUES LESS THAN ('2016-12-02') ENGINE = InnoDB,
     PARTITION p20161202 VALUES LESS THAN ('2016-12-03') ENGINE = InnoDB,
     PARTITION p20161203 VALUES LESS THAN ('2016-12-04') ENGINE = InnoDB,

    该表上经常发生下面的慢查询:

    SELECT ... FROM `t1` WHERE `date` = '2017-04-01' AND `icnt` > 300 AND `id` = '801301';

    SQL优化之路

    SQL优化思路

    想要优化一个SQL,一般来说就是先看执行计划,观察是否尽可能用到索引,同时要关注预计扫描的行数,以及是否产生了临时表(Using temporary) 或者 是否需要进行排序(Using filesort),想办法消除这些情况。

    更进一步的优化策略则可能需要调整程序代码逻辑,甚至技术架构或者业务需求,这个动作比较大,一般非核心系统上的核心问题,不会这么大动干戈,绝大多数情况,还是需要靠DBA尽可能发挥聪明才智来解决。

    SQL性能瓶颈定位

    现在,我们来看下这个SQL的执行计划:

    yejr@imysql.com[myDB]> EXPLAIN PARTITIONS SELECT ... FROM `t1` WHERE 
     `date` = '2017-03-02' AND `icnt` > 100 AND `iid` = '502302'\G
    *************************** 1. row ***************************
       id: 1
     select_type: SIMPLE
      table: t1
     partitions: p20170302
       type: range
    possible_keys: date,date_2
       key: date
      key_len: 3
       ref: const
       rows: 9384602
      Extra: Using where

    这个执行计划看起来还好,有索引可用,也没临时表,也没filesort。不过,我们也注意到,预计要扫描的行数还是挺多的 rows: 9384602,而且要扫描zheng整个分区的所有数据,难怪效率不高,总是SLOW QUERY。

    优化思考

    我们注意到这个SQL总是要查询某一天的数据,这个表已经做了按天分区,那是不是可以忽略 WHERE 子句中的 时间条件呢?

    还有,既然去掉了 date 条件,反观表DDL,剩下的条件貌似就没有合适的索引了吧?

    所以,我们尝试新建一个索引:

    yejr@imysql.com[myDB]> ALTER TABLE t1 ADD INDEX iid (iid, icnt);

    然后,把SQL改造成下面这样,再看下执行计划:

    yejr@imysql.com[myDB]> EXPLAIN PARTITIONS SELECT ... FROM `t1` partition(p2017030) WHERE 
     `icnt` > 100 AND `iid` = '502302'\G
    *************************** 1. row ***************************
       id: 1
     select_type: SIMPLE
      table: t1
     partitions: p20170302
       type: ref
    possible_keys: date,date_2,iid
       key: iid
      key_len: 10
       ref: const
       rows: 7800
      Extra: Using where
    这优化效果,杠杠滴。
    
    事实上,如果不强制指定分区的话,也是可以达到优化效果的:
    
    yejr@imysql.com[myDB]> EXPLAIN PARTITIONS SELECT ... FROM `t1` WHERE 
     `date` = '2017-03-02' AND `icnt` > 100 AND `iid` = '502302'\G
    *************************** 1. row ***************************
       id: 1
     select_type: SIMPLE
      table: t1
     partitions: p20170302
       type: ref
    possible_keys: date,date_2,iid
       key: iid
      key_len: 10
       ref: NULL
       rows: 7800
      Extra: Using where

    后记

    绝大多数的SQL通过添加索引、适当调整SQL代码(例如调整驱动表顺序)等简单手法来完成。

    多说几句,遇到SQL优化性能瓶颈问题想要在技术群里请教时,麻烦先提供几个必要的信息:

    以上就是分区表场景下的 SQL 优化的详细内容,更多关于sql分区表优化的资料请关注脚本之家其它相关文章!

    您可能感兴趣的文章:
    • MySQL优化之分区表
    • 详解MySQL分区表
    • MySQL最佳实践之分区表基本类型
    • MySQL分区表的正确使用方法
    • MySQL分区表的局限和限制详解
    • PostgreSQL分区表(partitioning)应用实例详解
    • Mysql分区表的管理与维护
    • PostgreSQL教程(三):表的继承和分区表详解
    • Rails中使用MySQL分区表一个提升性能的方法
    • mysql使用教程之分区表的使用方法(删除分区表)
    上一篇:SQL Server异常代码处理的深入讲解
    下一篇:详解partition by和group by对比
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    分区表场景下的 SQL 优化 分区表,场景,下,的,SQL,优化,