网上找的协程安全的map都是用互斥锁或者读写锁实现的,这里用单个协程来实现下,即所有的增删查改操作都集成到一个goroutine中,这样肯定不会出现多线程并发访问的问题。
基本思路是后台启动一个长期运行的goroutine,阻塞的接受自己channel中的请求req,req分为不同的请求,比如读key,写key等,然后在这个goroutine中进行各种操作。
例: Get方法向readSig(channel)中发送一条请求。请求是readReq的指针,当run方法接收到信号时,读取底层map,将值写入readReq的value中(value是个channel),Get方法阻塞的接收value,接收到就返回value。
package util
type smap struct {
m map[interface{}]interface{}
readSig chan *readReq
writeSig chan *writeReq
lenSig chan *lenReq
terminateSig chan bool
delSig chan *delReq
scanSig chan *scanReq
}
type readReq struct {
key interface{}
value interface{}
ok chan bool
}
type writeReq struct {
key interface{}
value interface{}
ok chan bool
}
type lenReq struct {
len chan int
}
type delReq struct {
key interface{}
ok chan bool
}
type scanReq struct {
do func(interface{}, interface{})
doWithBreak func(interface{}, interface{}) bool
brea int
done chan bool
}
// NewSmap returns an instance of the pointer of safemap
func NewSmap() *smap {
var mp smap
mp.m = make(map[interface{}]interface{})
mp.readSig = make(chan *readReq)
mp.writeSig = make(chan *writeReq)
mp.lenSig = make(chan *lenReq)
mp.delSig = make(chan *delReq)
mp.scanSig = make(chan *scanReq)
go mp.run()
return mp
}
//background function to operate map in one goroutine
//this can ensure that the map is Concurrent security.
func (s *smap) run() {
for {
select {
case read := -s.readSig:
if value, ok := s.m[read.key]; ok {
read.value = value
read.ok - true
} else {
read.ok - false
}
case write := -s.writeSig:
s.m[write.key] = write.value
write.ok - true
case l := -s.lenSig:
l.len - len(s.m)
case sc := -s.scanSig:
if sc.brea == 0 {
for k, v := range s.m {
sc.do(k, v)
}
} else {
for k, v := range s.m {
ret := sc.doWithBreak(k, v)
if ret {
break
}
}
}
sc.done - true
case d := -s.delSig:
delete(s.m, d.key)
d.ok - true
case -s.terminateSig:
return
}
}
}
//Get returns the value of key which provided.
//if the key not found in map, ok will be false.
func (s *smap) Get(key interface{}) (interface{}, bool) {
req := readReq{
key: key,
ok: make(chan bool),
}
s.readSig - req
ok := -req.ok
return req.value, ok
}
//Set set the key and value to map
//ok returns true indicates that key and value is successfully added to map
func (s *smap) Set(key interface{}, value interface{}) bool {
req := writeReq{
key: key,
value: value,
ok: make(chan bool),
}
s.writeSig - req
return -req.ok //TODO 暂时先是同步的,异步的可能存在使用方面的问题。
}
//Clear clears all the key and value in map.
func (s *smap) Clear() {
s.m = make(map[interface{}]interface{})
}
//Size returns the size of map.
func (s *smap) Size() int {
req := lenReq{
len: make(chan int),
}
s.lenSig - req
return -req.len
}
//terminate s.Run function. this function is usually called for debug.
//after this do NOT use smap again, because it can make your program block.
func (s *smap) TerminateBackGoroutine() {
s.terminateSig - true
}
//Del delete the key in map
func (s *smap) Del(key interface{}) bool {
req := delReq{
key: key,
ok: make(chan bool),
}
s.delSig - req
return -req.ok
}
//scan the map. do is a function which operate all of the key and value in map
func (s *smap) EachItem(do func(interface{}, interface{})) {
req := scanReq{
do: do,
brea: 0,
done: make(chan bool),
}
s.scanSig - req
-req.done
}
//scan the map util function 'do' returns true. do is a function which operate all of the key and value in map
func (s *smap) EachItemBreak(do func(interface{}, interface{}) bool, condition bool) {
req := scanReq{
doWithBreak: do,
brea: 1,
done: make(chan bool),
}
s.scanSig - req
-req.done
}
//Exists checks whether the key which provided is exists in map
func (s *smap) Exists(key interface{}) bool {
if _,found := s.Get(key); found {
return true
}
return false
}