• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Golang实现请求限流的几种办法(小结)

    在开发高并发系统时,有三把利器用来保护系统:缓存、降级和限流。那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。

    简单的并发控制

    利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。

    比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。

    chLimit := make(chan bool, 1)

    然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。

    for i, sleeptime := range input {
      chs[i] = make(chan string, 1)
      chLimit - true
      go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
    }
    

    这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。

    limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
      Run(task_id, sleeptime, timeout, ch)
      -chLimit
    }

    这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。

    例子

    package main
     
    import (
      "fmt"
      "time"
    )
     
    func Run(task_id, sleeptime, timeout int, ch chan string) {
      ch_run := make(chan string)
      go run(task_id, sleeptime, ch_run)
      select {
      case re := -ch_run:
        ch - re
      case -time.After(time.Duration(timeout) * time.Second):
        re := fmt.Sprintf("task id %d , timeout", task_id)
        ch - re
      }
    }
     
    func run(task_id, sleeptime int, ch chan string) {
     
      time.Sleep(time.Duration(sleeptime) * time.Second)
      ch - fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)
      return
    }
     
    func main() {
      input := []int{3, 2, 1}
      timeout := 2
      chLimit := make(chan bool, 1)
      chs := make([]chan string, len(input))
      limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
        Run(task_id, sleeptime, timeout, ch)
        -chLimit
      }
      startTime := time.Now()
      fmt.Println("Multirun start")
      for i, sleeptime := range input {
        chs[i] = make(chan string, 1)
        chLimit - true
        go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
      }
     
      for _, ch := range chs {
        fmt.Println(-ch)
      }
      endTime := time.Now()
      fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))
    }
    

    运行结果:

    Multirun start
         task id 0 , timeout
         task id 1 , timeout
         task id 2 , sleep 1 second
         Multissh finished. Process time 5s. Number of task is 3

    如果修改并发限制为2:

    chLimit := make(chan bool, 2)

    运行结果:

    Multirun start
        task id 0 , timeout
        task id 1 , timeout
        task id 2 , sleep 1 second
        Multissh finished. Process time 3s. Number of task is 3

    使用计数器实现请求限流

    限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:

    type RequestLimitService struct {
      Interval time.Duration
      MaxCount int
      Lock   sync.Mutex
      ReqCount int
    }
     
    func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService {
      reqLimit := RequestLimitService{
        Interval: interval,
        MaxCount: maxCnt,
      }
     
      go func() {
        ticker := time.NewTicker(interval)
        for {
          -ticker.C
          reqLimit.Lock.Lock()
          fmt.Println("Reset Count...")
          reqLimit.ReqCount = 0
          reqLimit.Lock.Unlock()
        }
      }()
     
      return reqLimit
    }
     
    func (reqLimit *RequestLimitService) Increase() {
      reqLimit.Lock.Lock()
      defer reqLimit.Lock.Unlock()
     
      reqLimit.ReqCount += 1
    }
     
    func (reqLimit *RequestLimitService) IsAvailable() bool {
      reqLimit.Lock.Lock()
      defer reqLimit.Lock.Unlock()
     
      return reqLimit.ReqCount  reqLimit.MaxCount
    }
    

    在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:

    var RequestLimit = NewRequestLimitService(10 * time.Second, 5)
     
    func helloHandler(w http.ResponseWriter, r *http.Request) {
      if RequestLimit.IsAvailable() {
        RequestLimit.Increase()
        fmt.Println(RequestLimit.ReqCount)
        io.WriteString(w, "Hello world!\n")
      } else {
        fmt.Println("Reach request limiting!")
        io.WriteString(w, "Reach request limit!\n")
      }
    }
     
    func main() {
      fmt.Println("Server Started!")
      http.HandleFunc("/", helloHandler)
      http.ListenAndServe(":8000", nil)
    }
    

    完整代码 url

    使用golang官方包实现httpserver频率限制

    使用golang来编写httpserver时,可以使用官方已经有实现好的包:

    import(
      "fmt"
      "net"
      "golang.org/x/net/netutil"
    )
     
    func main() {
      l, err := net.Listen("tcp", "127.0.0.1:0")
      if err != nil {
        fmt.Fatalf("Listen: %v", err)
      }
      defer l.Close()
      l = LimitListener(l, max)
      
      http.Serve(l, http.HandlerFunc())
      
      //bla bla bla.................
    }
    

    源码[url] ( https://github.com/golang/net/blob/master/netutil/listen.go ),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。

    // Copyright 2013 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
     
    // Package netutil provides network utility functions, complementing the more
    // common ones in the net package.
    package netutil // import "golang.org/x/net/netutil"
     
    import (
      "net"
      "sync"
    )
     
    // LimitListener returns a Listener that accepts at most n simultaneous
    // connections from the provided Listener.
    func LimitListener(l net.Listener, n int) net.Listener {
      return limitListener{
        Listener: l,
        sem:   make(chan struct{}, n),
        done:   make(chan struct{}),
      }
    }
     
    type limitListener struct {
      net.Listener
      sem    chan struct{}
      closeOnce sync.Once   // ensures the done chan is only closed once
      done   chan struct{} // no values sent; closed when Close is called
    }
     
    // acquire acquires the limiting semaphore. Returns true if successfully
    // accquired, false if the listener is closed and the semaphore is not
    // acquired.
    func (l *limitListener) acquire() bool {
      select {
      case -l.done:
        return false
      case l.sem - struct{}{}:
        return true
      }
    }
    func (l *limitListener) release() { -l.sem }
     
    func (l *limitListener) Accept() (net.Conn, error) {
      //如果sem满了,就会阻塞在这
      acquired := l.acquire()
      // If the semaphore isn't acquired because the listener was closed, expect
      // that this call to accept won't block, but immediately return an error.
      c, err := l.Listener.Accept()
      if err != nil {
        if acquired {
          l.release()
        }
        return nil, err
      }
      return limitListenerConn{Conn: c, release: l.release}, nil
    }
     
    func (l *limitListener) Close() error {
      err := l.Listener.Close()
      l.closeOnce.Do(func() { close(l.done) })
      return err
    }
     
    type limitListenerConn struct {
      net.Conn
      releaseOnce sync.Once
      release   func()
    }
     
    func (l *limitListenerConn) Close() error {
      err := l.Conn.Close()
      //close时释放占用的sem
      l.releaseOnce.Do(l.release)
      return err
    }
    

    使用Token Bucket(令牌桶算法)实现请求限流

    在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。

    这里为大家推荐一个开源库 https://github.com/didip/tollbooth ,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件

    首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:

    $ go get golang.org/x/time/rate

    Demo代码的实现

    package main
     
    import (
      "net/http"
      "golang.org/x/time/rate"
    )
     
    var limiter = rate.NewLimiter(2, 5)
    func limit(next http.Handler) http.Handler {
      return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        if limiter.Allow() == false {
          http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
          return
        }
        next.ServeHTTP(w, r)
      })
    }
     
    func main() {
      mux := http.NewServeMux()
      mux.HandleFunc("/", okHandler)
      // Wrap the servemux with the limit middleware.
      http.ListenAndServe(":4000", limit(mux))
    }
     
    func okHandler(w http.ResponseWriter, r *http.Request) {
      w.Write([]byte("OK"))
    }
    

    算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;

    实现

    // Copyright 2015 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    // Package rate provides a rate limiter.
    package rate
     
    import (
      "fmt"
      "math"
      "sync"
      "time"
     
      "golang.org/x/net/context"
    )
     
    // Limit defines the maximum frequency of some events.
    // Limit is represented as number of events per second.
    // A zero Limit allows no events.
    type Limit float64
     
    // Inf is the infinite rate limit; it allows all events (even if burst is zero).
    const Inf = Limit(math.MaxFloat64)
     
    // Every converts a minimum time interval between events to a Limit.
    func Every(interval time.Duration) Limit {
      if interval = 0 {
        return Inf
      }
      return 1 / Limit(interval.Seconds())
    }
     
    // A Limiter controls how frequently events are allowed to happen.
    // It implements a "token bucket" of size b, initially full and refilled
    // at rate r tokens per second.
    // Informally, in any large enough time interval, the Limiter limits the
    // rate to r tokens per second, with a maximum burst size of b events.
    // As a special case, if r == Inf (the infinite rate), b is ignored.
    // See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
    //
    // The zero value is a valid Limiter, but it will reject all events.
    // Use NewLimiter to create non-zero Limiters.
    //
    // Limiter has three main methods, Allow, Reserve, and Wait.
    // Most callers should use Wait.
    //
    // Each of the three methods consumes a single token.
    // They differ in their behavior when no token is available.
    // If no token is available, Allow returns false.
    // If no token is available, Reserve returns a reservation for a future token
    // and the amount of time the caller must wait before using it.
    // If no token is available, Wait blocks until one can be obtained
    // or its associated context.Context is canceled.
    //
    // The methods AllowN, ReserveN, and WaitN consume n tokens.
    type Limiter struct {
      //maximum token, token num per second
      limit Limit
      //burst field, max token num
      burst int
      mu  sync.Mutex
      //tokens num, change
      tokens float64
      // last is the last time the limiter's tokens field was updated
      last time.Time
      // lastEvent is the latest time of a rate-limited event (past or future)
      lastEvent time.Time
    }
     
    // Limit returns the maximum overall event rate.
    func (lim *Limiter) Limit() Limit {
      lim.mu.Lock()
      defer lim.mu.Unlock()
      return lim.limit
    }
     
    // Burst returns the maximum burst size. Burst is the maximum number of tokens
    // that can be consumed in a single call to Allow, Reserve, or Wait, so higher
    // Burst values allow more events to happen at once.
    // A zero Burst allows no events, unless limit == Inf.
    func (lim *Limiter) Burst() int {
      return lim.burst
    }
     
    // NewLimiter returns a new Limiter that allows events up to rate r and permits
    // bursts of at most b tokens.
    func NewLimiter(r Limit, b int) *Limiter {
      return Limiter{
        limit: r,
        burst: b,
      }
    }
     
    // Allow is shorthand for AllowN(time.Now(), 1).
    func (lim *Limiter) Allow() bool {
      return lim.AllowN(time.Now(), 1)
    }
     
    // AllowN reports whether n events may happen at time now.
    // Use this method if you intend to drop / skip events that exceed the rate limit.
    // Otherwise use Reserve or Wait.
    func (lim *Limiter) AllowN(now time.Time, n int) bool {
      return lim.reserveN(now, n, 0).ok
    }
     
    // A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
    // A Reservation may be canceled, which may enable the Limiter to permit additional events.
    type Reservation struct {
      ok   bool
      lim  *Limiter
      tokens int
      //This is the time to action
      timeToAct time.Time
      // This is the Limit at reservation time, it can change later.
      limit Limit
    }
     
    // OK returns whether the limiter can provide the requested number of tokens
    // within the maximum wait time. If OK is false, Delay returns InfDuration, and
    // Cancel does nothing.
    func (r *Reservation) OK() bool {
      return r.ok
    }
     
    // Delay is shorthand for DelayFrom(time.Now()).
    func (r *Reservation) Delay() time.Duration {
      return r.DelayFrom(time.Now())
    }
     
    // InfDuration is the duration returned by Delay when a Reservation is not OK.
    const InfDuration = time.Duration(163 - 1)
     
    // DelayFrom returns the duration for which the reservation holder must wait
    // before taking the reserved action. Zero duration means act immediately.
    // InfDuration means the limiter cannot grant the tokens requested in this
    // Reservation within the maximum wait time.
    func (r *Reservation) DelayFrom(now time.Time) time.Duration {
      if !r.ok {
        return InfDuration
      }
      delay := r.timeToAct.Sub(now)
      if delay  0 {
        return 0
      }
      return delay
    }
     
    // Cancel is shorthand for CancelAt(time.Now()).
    func (r *Reservation) Cancel() {
      r.CancelAt(time.Now())
      return
    }
     
    // CancelAt indicates that the reservation holder will not perform the reserved action
    // and reverses the effects of this Reservation on the rate limit as much as possible,
    // considering that other reservations may have already been made.
    func (r *Reservation) CancelAt(now time.Time) {
      if !r.ok {
        return
      }
      r.lim.mu.Lock()
      defer r.lim.mu.Unlock()
      if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
        return
      }
      // calculate tokens to restore
      // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
      // after r was obtained. These tokens should not be restored.
      restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
      if restoreTokens = 0 {
        return
      }
      // advance time to now
      now, _, tokens := r.lim.advance(now)
      // calculate new number of tokens
      tokens += restoreTokens
      if burst := float64(r.lim.burst); tokens > burst {
        tokens = burst
      }
      // update state
      r.lim.last = now
      r.lim.tokens = tokens
      if r.timeToAct == r.lim.lastEvent {
        prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
        if !prevEvent.Before(now) {
          r.lim.lastEvent = prevEvent
        }
      }
      return
    }
     
    // Reserve is shorthand for ReserveN(time.Now(), 1).
    func (lim *Limiter) Reserve() *Reservation {
      return lim.ReserveN(time.Now(), 1)
    }
     
    // ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
    // The Limiter takes this Reservation into account when allowing future events.
    // ReserveN returns false if n exceeds the Limiter's burst size.
    // Usage example:
    //  r, ok := lim.ReserveN(time.Now(), 1)
    //  if !ok {
    //   // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
    //  }
    //  time.Sleep(r.Delay())
    //  Act()
    // Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
    // If you need to respect a deadline or cancel the delay, use Wait instead.
    // To drop or skip events exceeding rate limit, use Allow instead.
    func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
      r := lim.reserveN(now, n, InfDuration)
      return r
    }
     
    // Wait is shorthand for WaitN(ctx, 1).
    func (lim *Limiter) Wait(ctx context.Context) (err error) {
      return lim.WaitN(ctx, 1)
    }
     
    // WaitN blocks until lim permits n events to happen.
    // It returns an error if n exceeds the Limiter's burst size, the Context is
    // canceled, or the expected wait time exceeds the Context's Deadline.
    func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
      if n > lim.burst {
        return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
      }
      // Check if ctx is already cancelled
      select {
      case -ctx.Done():
        return ctx.Err()
      default:
      }
      // Determine wait limit
      now := time.Now()
      waitLimit := InfDuration
      if deadline, ok := ctx.Deadline(); ok {
        waitLimit = deadline.Sub(now)
      }
      // Reserve
      r := lim.reserveN(now, n, waitLimit)
      if !r.ok {
        return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
      }
      // Wait
      t := time.NewTimer(r.DelayFrom(now))
      defer t.Stop()
      select {
      case -t.C:
        // We can proceed.
        return nil
      case -ctx.Done():
        // Context was canceled before we could proceed. Cancel the
        // reservation, which may permit other events to proceed sooner.
        r.Cancel()
        return ctx.Err()
      }
    }
     
    // SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
    func (lim *Limiter) SetLimit(newLimit Limit) {
      lim.SetLimitAt(time.Now(), newLimit)
    }
     
    // SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
    // or underutilized by those which reserved (using Reserve or Wait) but did not yet act
    // before SetLimitAt was called.
    func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
      lim.mu.Lock()
      defer lim.mu.Unlock()
      now, _, tokens := lim.advance(now)
      lim.last = now
      lim.tokens = tokens
      lim.limit = newLimit
    }
     
    // reserveN is a helper method for AllowN, ReserveN, and WaitN.
    // maxFutureReserve specifies the maximum reservation wait duration allowed.
    // reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
    func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
      lim.mu.Lock()
      defer lim.mu.Unlock()
      if lim.limit == Inf {
        return Reservation{
          ok:    true,
          lim:    lim,
          tokens:  n,
          timeToAct: now,
        }
      }
      now, last, tokens := lim.advance(now)
      // Calculate the remaining number of tokens resulting from the request.
      tokens -= float64(n)
      // Calculate the wait duration
      var waitDuration time.Duration
      if tokens  0 {
        waitDuration = lim.limit.durationFromTokens(-tokens)
      }
      // Decide result
      ok := n = lim.burst  waitDuration = maxFutureReserve
      // Prepare reservation
      r := Reservation{
        ok:  ok,
        lim:  lim,
        limit: lim.limit,
      }
      if ok {
        r.tokens = n
        r.timeToAct = now.Add(waitDuration)
      }
      // Update state
      if ok {
        lim.last = now
        lim.tokens = tokens
        lim.lastEvent = r.timeToAct
      } else {
        lim.last = last
      }
      return r
    }
     
    // advance calculates and returns an updated state for lim resulting from the passage of time.
    // lim is not changed.
    func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
      last := lim.last
      if now.Before(last) {
        last = now
      }
      // Avoid making delta overflow below when last is very old.
      maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
      elapsed := now.Sub(last)
      if elapsed > maxElapsed {
        elapsed = maxElapsed
      }
      // Calculate the new number of tokens, due to time that passed.
      delta := lim.limit.tokensFromDuration(elapsed)
      tokens := lim.tokens + delta
      if burst := float64(lim.burst); tokens > burst {
        tokens = burst
      }
      return now, last, tokens
    }
     
    // durationFromTokens is a unit conversion function from the number of tokens to the duration
    // of time it takes to accumulate them at a rate of limit tokens per second.
    func (limit Limit) durationFromTokens(tokens float64) time.Duration {
      seconds := tokens / float64(limit)
      return time.Nanosecond * time.Duration(1e9*seconds)
    }
     
    // tokensFromDuration is a unit conversion function from a time duration to the number of tokens
    // which could be accumulated during that duration at a rate of limit tokens per second.
    func (limit Limit) tokensFromDuration(d time.Duration) float64 {
      return d.Seconds() * float64(limit)
    }
    

    虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:

    package main
    import (
      "net/http"
      "sync"
      "time"
      "golang.org/x/time/rate"
    )
    // Create a custom visitor struct which holds the rate limiter for each
    // visitor and the last time that the visitor was seen.
    type visitor struct {
      limiter *rate.Limiter
      lastSeen time.Time
    }
    // Change the the map to hold values of the type visitor.
    var visitors = make(map[string]*visitor)
    var mtx sync.Mutex
    // Run a background goroutine to remove old entries from the visitors map.
    func init() {
      go cleanupVisitors()
    }
    func addVisitor(ip string) *rate.Limiter {
      limiter := rate.NewLimiter(2, 5)
      mtx.Lock()
      // Include the current time when creating a new visitor.
      visitors[ip] = visitor{limiter, time.Now()}
      mtx.Unlock()
      return limiter
    }
    func getVisitor(ip string) *rate.Limiter {
      mtx.Lock()
      v, exists := visitors[ip]
      if !exists {
        mtx.Unlock()
        return addVisitor(ip)
      }
      // Update the last seen time for the visitor.
      v.lastSeen = time.Now()
      mtx.Unlock()
      return v.limiter
    }
    // Every minute check the map for visitors that haven't been seen for
    // more than 3 minutes and delete the entries.
    func cleanupVisitors() {
      for {
        time.Sleep(time.Minute)
        mtx.Lock()
        for ip, v := range visitors {
          if time.Now().Sub(v.lastSeen) > 3*time.Minute {
            delete(visitors, ip)
          }
        }
        mtx.Unlock()
      }
    }
    func limit(next http.Handler) http.Handler {
      return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        limiter := getVisitor(r.RemoteAddr)
        if limiter.Allow() == false {
          http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
          return
        }
        next.ServeHTTP(w, r)
      })
    }

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • golang简易令牌桶算法实现代码
    • 详解Golang实现请求限流的几种办法
    • golang高并发限流操作 ping / telnet
    • golang接口IP限流,IP黑名单,IP白名单的实例
    • Golang 限流器的使用和实现示例
    • Golang模拟令牌桶进行对访问的限流方式
    上一篇:golang协程池设计详解
    下一篇:使用go在mangodb中进行CRUD操作
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Golang实现请求限流的几种办法(小结) Golang,实现,请求,限,流的,