• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python实现疫情地图可视化

    一、 json模块

           JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于阅读和编写,同时也易于机器解析和生成,并有效地提升网络传输效率。

    # 如何将json数据解析成我们所熟悉的Python数据类型?
    import json
    # 将json格式的str转化成python的数据格式:字典
    dic = json.loads('{"name":"Tom","age":23}')
    res = json.loads('["name","age","gender"]')
    print(f'利用loads将json字符串转化成Python数据类型{dic}',type(dic))
    print(f'利用loads将json字符串转化成Python数据类型{res}',type(res))

    dics = {"name":"Tom","age":23}
    result = json.dumps(dics)
    print(type(result))
    result

    二、通过Python实现疫情地图可视化

    需求:爬取疫情的数据、如何处理json数据以及根据疫情数据如何利用pyecharts绘制疫情地图。

    1.数据的获取(基于request模块)

    import requests
    import json
    # 国内疫情数据
    China_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    headers = {
     # 浏览器伪装
     'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36',
     'referer': 'https://news.qq.com/',
    }
    # 发起get请求,获取响应数据
    response = requests.get(China_url,headers=headers).json()
    data = json.loads(response['data'])
    # 保存数据
    with open('./2021-02-03国内疫情.json','w',encoding='utf-8') as f:
     # 不采用ASCII编码
     f.write(json.dumps(data,ensure_ascii=False,indent=2))

    爬取的数据保存格式为json,开头的部分数据如下:

    2.将json格式的数据保存到Excel

            无论是json数据存储的,还是Python的基本数据类型存储的,对于数据分析都不是很友好,所以我们可以将其数据存储类型转化为pandas的DataFrame类型,因为DataFrame和Excel可以更好的相互转换。

    生成的数据模式如下:

    将以上的数据进行处理,获得Excel表一样规范的数据格式。

    import pandas as pd
    chinaTotalData = pd.DataFrame(china_citylist)
    
    # 将整体数据chinaTotalData中的today和total数据添加到DataFrame中
    # 处理total字典里面的各个数据项
    # ======================================================================
    confirmlist = []
    suspectlist = []
    deadlist = []
    heallist = []
    deadRatelist = []
    healRatelist = []
    # print(chinaTotalData['total'].values.tolist()[0])
    for value in chinaTotalData['total'].values.tolist():
     confirmlist.append(value['confirm'])
     suspectlist.append(value['suspect'])
     deadlist.append(value['dead'])
     heallist.append(value['heal'])
     deadRatelist.append(value['deadRate'])
     healRatelist.append(value['healRate'])
    
    chinaTotalData['confirm'] = confirmlist
    chinaTotalData['suspect'] = suspectlist
    chinaTotalData['dead'] = deadlist
    chinaTotalData['heal'] = heallist
    chinaTotalData['deadRate'] = deadRatelist
    chinaTotalData['healRate'] = healRatelist
    # ===================================================================
    # 创建全国today数据
    today_confirmlist = []
    today_confirmCutslist = []
    for value in chinaTotalData['today'].values.tolist():
     today_confirmlist.append(value['confirm'])
     today_confirmCutslist.append(value['confirmCuts'])
    
    chinaTotalData['today_confirm'] = today_confirmlist
    chinaTotalData['today_confirmCuts'] = today_confirmCutslist
    # ==================================================================
    # 删除total、today两列
    chinaTotalData.drop(['total','today'],axis=1,inplace=True)
    chinaTotalData.head()
    # 将其保存到Excel中
    chinaTotalData.to_excel('2021-02-03国内疫情.xlsx',index=False)

    处理好的数据结构如下表:

    3.应用pyecharts进行数据可视化

            pyecharts是一款将python与echarts结合的强大的数据可视化工具。绘制出来的图比Python的Matplotlib简单美观。使用之前需要在Python环境中按照pycharts。在终端中输入命令:pip install pyecharts

    利用pyecharts绘制疫情地图
            根据上面的疫情数据,我们可以利用其画出全国的疫情地图
    在绘制前,我们需要安装echarts的地图包(可根据不同的地图需求进行安装)

    pip install echarts-countries-pypkg
    pip install echarts-china-provinces-pypkg
    pip install echarts-china-cities-pypkg
    pip install echarts-china-misc-pypkg
    pip install echarts-china-countries-pypkg
    pip install echarts-united-kingdom-pypkg
    
    # 导入对应的绘图工具包
    import pandas as pd
    from pyecharts import options as opts
    from pyecharts.charts import Map
    
    df = pd.read_excel('./2021-02-03国内疫情.xlsx')
    # 1.根据绘制国内总疫情图(确诊)
    data = df.groupby(by='province',as_index=False).sum()
    data_list = list(zip(data['province'].values.tolist(),data['confirm'].values.tolist()))
    # 数据格式[(黑龙江,200),(吉林,300),...]
    
    def map_china() -> Map:
     c = (
      Map()
      .add(series_name="确诊病例",data_pair=data_list,maptype='china')
      .set_global_opts(
       title_opts = opts.TitleOpts(title='疫情地图'),
       visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
         pieces = [{"max":9, "min":0, "label":"0-9","color":"#FFE4E1"},
           {"max":99, "min":10, "label":"10-99","color":"#FF7F50"},
           {"max":499, "min":100, "label":"100-4999","color":"#F08080"},
           {"max":999, "min":500, "label":"500-999","color":"#CD5C5C"},
           {"max":9999, "min":1000, "label":"1000-9999","color":"#990000"},
           {"max":99999, "min":10000, "label":"10000-99999","color":"#660000"},]
       )
      )
     )
     return c
    
    d_map = map_china()
    d_map.render("mapEchrts.html")

    最终的运行效果如下:

    注:以上的运行环境是Python3.7版本,IDE是基于浏览器端的Jupter Notebook。

    以上就是Python实现疫情地图可视化的详细内容,更多关于python 疫情地图可视化的资料请关注脚本之家其它相关文章!

    您可能感兴趣的文章:
    • python用pyecharts实现地图数据可视化
    • python-地图可视化组件folium的操作
    • python使用pyecharts库画地图数据可视化的实现
    • python用folium绘制地图并设置弹窗
    • Python 使用folium绘制leaflet地图的实现方法
    • python使用folium库绘制地图点击框
    • Python地理地图可视化folium标记点弹窗设置代码(推荐)
    上一篇:pycharm 实现调试窗口恢复
    下一篇:pycharm 的Structure界面设置操作
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python实现疫情地图可视化 Python,实现,疫情,地图,可视化,