• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    python opencv实现图像配准与比较

    本文实例为大家分享了python opencv实现图像配准与比较的具体代码,供大家参考,具体内容如下

    代码 

    from skimage import io
    import cv2 as cv
    import numpy as np
    import matplotlib.pyplot as plt
     
    img_path1 = '2_HE_maxarea.png'
    img_path2 = '2_IHC_maxarea.png'
     
    img1 = io.imread(img_path1)
    img2 = io.imread(img_path2)
    img1 = np.uint8(img1)
    img2 = np.uint8(img2)
     
    # find the keypoints and descriptors with ORB
    orb = cv.ORB_create()
    kp1, des1 = orb.detectAndCompute(img1,None)
    kp2, des2 = orb.detectAndCompute(img2,None)
     
    # def get_good_match(des1,des2):
    #  bf = cv.BFMatcher()
    #  matches = bf.knnMatch(des1, des2, k=2)
    #  good = []
    #  for m, n in matches:
    #   if m.distance  0.75 * n.distance:
    #    good.append(m)
    #  return good,matches
    # goodMatch,matches = get_good_match(des1,des2)
    # img3 = cv.drawMatchesKnn(img1,kp1,img2,kp2,matches[:20],None,flags=2)
     
    # create BFMatcher object
    bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
    # Match descriptors.
    matches = bf.match(des1,des2)
    # Sort them in the order of their distance.
    matches = sorted(matches, key = lambda x:x.distance)
    # Draw first 20 matches.
    img3 = cv.drawMatches(img1,kp1,img2,kp2,matches[:20],None, flags=2)
     
     
    goodMatch = matches[:20]
    if len(goodMatch) > 4:
     ptsA= np.float32([kp1[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
     ptsB = np.float32([kp2[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
     ransacReprojThreshold = 4
     H, status =cv.findHomography(ptsA,ptsB,cv.RANSAC,ransacReprojThreshold);
     #其中H为求得的单应性矩阵矩阵
     #status则返回一个列表来表征匹配成功的特征点。
     #ptsA,ptsB为关键点
     #cv2.RANSAC, ransacReprojThreshold这两个参数与RANSAC有关
     imgOut = cv.warpPerspective(img2, H, (img1.shape[1],img1.shape[0]),flags=cv.INTER_LINEAR + cv.WARP_INVERSE_MAP)
     
    # 叠加配准变换图与基准图
    rate = 0.5
    overlapping = cv.addWeighted(img1, rate, imgOut, 1-rate, 0)
    io.imsave('HE_2_IHC.png', overlapping)
    err = cv.absdiff(img1,imgOut) 
     
    # 显示对比
    plt.subplot(221)
    plt.title('orb')
    plt.imshow(img3)
     
    plt.subplot(222)
    plt.title('imgOut')
    plt.imshow(imgOut)
     
    plt.subplot(223)
    plt.title('overlapping')
    plt.imshow(overlapping)
     
    plt.subplot(224)  
    plt.title('diff') 
    plt.imshow(err)
     
    plt.show()

    结果:

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • 利用Python+OpenCV三步去除水印
    • Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)
    • Python OpenCV中的numpy与图像类型转换操作
    • Python+OpenCV图像处理——图像二值化的实现
    • Python+OpenCV图像处理——实现直线检测
    • 使用OpenCV为图像加水印的教程
    上一篇:python urllib和urllib3知识点总结
    下一篇:python利用文件时间批量重命名照片和视频
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    python opencv实现图像配准与比较 python,opencv,实现,图像,配准,