• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    python+opencv实现车道线检测

    python+opencv车道线检测(简易实现),供大家参考,具体内容如下

    技术栈:python+opencv

    实现思路:

    1、canny边缘检测获取图中的边缘信息;
    2、霍夫变换寻找图中直线;
    3、绘制梯形感兴趣区域获得车前范围;
    4、得到并绘制车道线;

    效果展示:

    代码实现:

    import cv2
    import numpy as np
    
    
    def canny():
     gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
     #高斯滤波
     blur = cv2.GaussianBlur(gray, (5, 5), 0)
     #边缘检测
     canny_img = cv2.Canny(blur, 50, 150)
     return canny_img
    
    
    def region_of_interest(r_image):
     h = r_image.shape[0]
     w = r_image.shape[1]
     # 这个区域不稳定,需要根据图片更换
     poly = np.array([
     [(100, h), (500, h), (290, 180), (250, 180)]
     ])
     mask = np.zeros_like(r_image)
     # 绘制掩膜图像
     cv2.fillPoly(mask, poly, 255)
     # 获得ROI区域
     masked_image = cv2.bitwise_and(r_image, mask)
     return masked_image
    
    
    if __name__ == '__main__':
     image = cv2.imread('test.jpg')
     lane_image = np.copy(image)
     canny = canny()
     cropped_image = region_of_interest(canny)
     cv2.imshow("result", cropped_image)
     cv2.waitKey(0)

    霍夫变换加线性拟合改良:

    效果图:

    代码实现:

    主要增加了根据斜率作线性拟合过滤无用点后连线的操作;

    import cv2
    import numpy as np
    
    
    def canny():
     gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
     blur = cv2.GaussianBlur(gray, (5, 5), 0)
    
     canny_img = cv2.Canny(blur, 50, 150)
     return canny_img
    
    
    def region_of_interest(r_image):
     h = r_image.shape[0]
     w = r_image.shape[1]
    
     poly = np.array([
     [(100, h), (500, h), (280, 180), (250, 180)]
     ])
     mask = np.zeros_like(r_image)
     cv2.fillPoly(mask, poly, 255)
     masked_image = cv2.bitwise_and(r_image, mask)
     return masked_image
    
    
    def get_lines(img_lines):
     if img_lines is not None:
     for line in lines:
     for x1, y1, x2, y2 in line:
     # 分左右车道
     k = (y2 - y1) / (x2 - x1)
     if k  0:
      lefts.append(line)
     else:
      rights.append(line)
    
    
    def choose_lines(after_lines, slo_th): # 过滤斜率差别较大的点
     slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 获得斜率数组
     while len(after_lines) > 0:
     mean = np.mean(slope) # 计算平均斜率
     diff = [abs(s - mean) for s in slope] # 每条线斜率与平均斜率的差距
     idx = np.argmax(diff) # 找到最大斜率的索引
     if diff[idx] > slo_th: # 大于预设的阈值选取
     slope.pop(idx)
     after_lines.pop(idx)
     else:
     break
    
     return after_lines
    
    
    def clac_edgepoints(points, y_min, y_max):
     x = [p[0] for p in points]
     y = [p[1] for p in points]
    
     k = np.polyfit(y, x, 1) # 曲线拟合的函数,找到xy的拟合关系斜率
     func = np.poly1d(k) # 斜率代入可以得到一个y=kx的函数
    
     x_min = int(func(y_min)) # y_min = 325其实是近似找了一个
     x_max = int(func(y_max))
    
     return [(x_min, y_min), (x_max, y_max)]
    
    
    if __name__ == '__main__':
     image = cv2.imread('F:\\A_javaPro\\test.jpg')
     lane_image = np.copy(image)
     canny_img = canny()
     cropped_image = region_of_interest(canny_img)
     lefts = []
     rights = []
     lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20)
     get_lines(lines) # 分别得到左右车道线的图片
    
     good_leftlines = choose_lines(lefts, 0.1) # 处理后的点
     good_rightlines = choose_lines(rights, 0.1)
    
     leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left]
     leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left]
    
     rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right]
     rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right]
    
     lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要画左右车道线的端点
     righttop = clac_edgepoints(rightpoints, 180, image.shape[0])
    
     src = np.zeros_like(image)
    
     cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7)
     cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7)
    
     cv2.imshow('line Image', src)
     src_2 = cv2.addWeighted(image, 0.8, src, 1, 0)
     cv2.imshow('Finally Image', src_2)
    
     cv2.waitKey(0)

    待改进:

    代码实用性差,几乎不能用于实际,但是可以作为初学者的练手项目;
    斑马线检测思路:获取车前感兴趣区域,判断白色像素点比例即可实现;
    行人检测思路:opencv有内置行人检测函数,基于内置的训练好的数据集;

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • python基于OpenCV模板匹配识别图片中的数字
    • Python OpenCV高斯金字塔与拉普拉斯金字塔的实现
    • Python OpenCV 基于图像边缘提取的轮廓发现函数
    • Python opencv操作深入详解
    • Python+Opencv实现数字识别的示例代码
    • python中的opencv和PIL(pillow)转化操作
    • OpenCV+Python几何变换的实现示例
    • python利用opencv实现颜色检测
    • python opencv实现图像配准与比较
    • python OpenCV学习笔记
    上一篇:python UIAutomator2使用超详细教程
    下一篇:python的scipy.stats模块中正态分布常用函数总结
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    python+opencv实现车道线检测 python+opencv,实现,车道,线,