• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    对Pytorch 中的contiguous理解说明

    最近遇到这个函数,但查的中文博客里的解释貌似不是很到位,这里翻译一下stackoverflow上的回答并加上自己的理解。

    在pytorch中,只有很少几个操作是不改变tensor的内容本身,而只是重新定义下标与元素的对应关系的。换句话说,这种操作不进行数据拷贝和数据的改变,变的是元数据。

    这些操作是:

    narrow(),view(),expand()和transpose()

    举个栗子,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。

    转置的tensor和原tensor的内存是共享的!

    为了证明这一点,我们来看下面的代码:

    x = torch.randn(3, 2)
    y = x.transpose(x, 0, 1)
    x[0, 0] = 233
    print(y[0, 0])
    # print 233

    可以看到,改变了y的元素的值的同时,x的元素的值也发生了变化。

    也就是说,经过上述操作后得到的tensor,它内部数据的布局方式和从头开始创建一个这样的常规的tensor的布局方式是不一样的!于是…这就有contiguous()的用武之地了。

    在上面的例子中,x是contiguous的,但y不是(因为内部数据不是通常的布局方式)。

    注意不要被contiguous的字面意思“连续的”误解,tensor中数据还是在内存中一块区域里,只是布局的问题!

    当调用contiguous()时,会强制拷贝一份tensor,让它的布局和从头创建的一毛一样。

    一般来说这一点不用太担心,如果你没在需要调用contiguous()的地方调用contiguous(),运行时会提示你:

    RuntimeError: input is not contiguous

    只要看到这个错误提示,加上contiguous()就好啦~

    补充:pytorch之expand,gather,squeeze,sum,contiguous,softmax,max,argmax

    gather

    torch.gather(input,dim,index,out=None)。对指定维进行索引。比如4*3的张量,对dim=1进行索引,那么index的取值范围就是0~2.

    input是一个张量,index是索引张量。input和index的size要么全部维度都相同,要么指定的dim那一维度值不同。输出为和index大小相同的张量。

    import torch
    a=torch.tensor([[.1,.2,.3],
            [1.1,1.2,1.3],
            [2.1,2.2,2.3],
            [3.1,3.2,3.3]])
    b=torch.LongTensor([[1,2,1],
              [2,2,2],
              [2,2,2],
              [1,1,0]])
    b=b.view(4,3) 
    print(a.gather(1,b))
    print(a.gather(0,b))
    c=torch.LongTensor([1,2,0,1])
    c=c.view(4,1)
    print(a.gather(1,c))

    输出:

    tensor([[ 0.2000, 0.3000, 0.2000],
        [ 1.3000, 1.3000, 1.3000],
        [ 2.3000, 2.3000, 2.3000],
        [ 3.2000, 3.2000, 3.1000]])
    tensor([[ 1.1000, 2.2000, 1.3000],
        [ 2.1000, 2.2000, 2.3000],
        [ 2.1000, 2.2000, 2.3000],
        [ 1.1000, 1.2000, 0.3000]])
    tensor([[ 0.2000],
        [ 1.3000],
        [ 2.1000],
        [ 3.2000]])

    squeeze

    将维度为1的压缩掉。如size为(3,1,1,2),压缩之后为(3,2)

    import torch
    a=torch.randn(2,1,1,3)
    print(a)
    print(a.squeeze())

    输出:

    tensor([[[[-0.2320, 0.9513, 1.1613]]],
        [[[ 0.0901, 0.9613, -0.9344]]]])
    tensor([[-0.2320, 0.9513, 1.1613],
        [ 0.0901, 0.9613, -0.9344]])

    expand

    扩展某个size为1的维度。如(2,2,1)扩展为(2,2,3)

    import torch
    x=torch.randn(2,2,1)
    print(x)
    y=x.expand(2,2,3)
    print(y)

    输出:

    tensor([[[ 0.0608],
         [ 2.2106]],
     
        [[-1.9287],
         [ 0.8748]]])
    tensor([[[ 0.0608, 0.0608, 0.0608],
         [ 2.2106, 2.2106, 2.2106]],
     
        [[-1.9287, -1.9287, -1.9287],
         [ 0.8748, 0.8748, 0.8748]]])

    sum

    size为(m,n,d)的张量,dim=1时,输出为size为(m,d)的张量

    import torch
    a=torch.tensor([[[1,2,3],[4,8,12]],[[1,2,3],[4,8,12]]])
    print(a.sum())
    print(a.sum(dim=1))

    输出:

    tensor(60)
    tensor([[ 5, 10, 15],
        [ 5, 10, 15]])

    contiguous

    返回一个内存为连续的张量,如本身就是连续的,返回它自己。一般用在view()函数之前,因为view()要求调用张量是连续的。

    可以通过is_contiguous查看张量内存是否连续。

    import torch
    a=torch.tensor([[[1,2,3],[4,8,12]],[[1,2,3],[4,8,12]]])
    print(a.is_contiguous) 
    print(a.contiguous().view(4,3))

    输出:

    built-in method is_contiguous of Tensor object at 0x7f4b5e35afa0>
    tensor([[ 1,  2,  3],
        [ 4,  8, 12],
        [ 1,  2,  3],
        [ 4,  8, 12]])

    softmax

    假设数组V有C个元素。对其进行softmax等价于将V的每个元素的指数除以所有元素的指数之和。这会使值落在区间(0,1)上,并且和为1。

    import torch
    import torch.nn.functional as F 
    a=torch.tensor([[1.,1],[2,1],[3,1],[1,2],[1,3]])
    b=F.softmax(a,dim=1)
    print(b)

    输出:

    tensor([[ 0.5000, 0.5000],
        [ 0.7311, 0.2689],
        [ 0.8808, 0.1192],
        [ 0.2689, 0.7311],
        [ 0.1192, 0.8808]])

    max

    返回最大值,或指定维度的最大值以及index

    import torch
    a=torch.tensor([[.1,.2,.3],
            [1.1,1.2,1.3],
            [2.1,2.2,2.3],
            [3.1,3.2,3.3]])
    print(a.max(dim=1))
    print(a.max())

    输出:

    (tensor([ 0.3000, 1.3000, 2.3000, 3.3000]), tensor([ 2, 2, 2, 2]))
    tensor(3.3000)
    

    argmax

    返回最大值的index

    import torch
    a=torch.tensor([[.1,.2,.3],
            [1.1,1.2,1.3],
            [2.1,2.2,2.3],
            [3.1,3.2,3.3]])
    print(a.argmax(dim=1))
    print(a.argmax())

    输出:

    tensor([ 2, 2, 2, 2])
    tensor(11)

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • Pytorch之contiguous的用法
    • 基于pytorch中的Sequential用法说明
    • Pytorch Tensor基本数学运算详解
    • 详解PyTorch中Tensor的高阶操作
    上一篇:Flask中jinja2的继承实现方法及实例
    下一篇:聊聊Python pandas 中loc函数的使用,及跟iloc的区别说明
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    对Pytorch 中的contiguous理解说明 对,Pytorch,中的,contiguous,