于是,经过思考后我觉得,判断两张图片在颜色上相不相似,其本质在于判断其直方图分布的形状相不相似,而不应该考虑是偏左还是偏右、是偏亮还是偏暗。一个图像亮一点,但其实它们还是相似的。
基于这个思想,我先暴力的把BGR以及HLS,三个通道先相互独立的直接均衡化,验证了判断分布形状的可行性。但同时,发现相互独立的均衡化会导致对于不同图片的分辨能力降低。所以,由此推论出,应该是把亮度拉平均衡化,同时相关联的影响到其他通道的变化。
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
def create_rgb_hist(image):
""""创建 RGB 三通道直方图(直方图矩阵)"""
h, w, c = image.shape
# 创建一个(16*16*16,1)的初始矩阵,作为直方图矩阵
# 16*16*16的意思为三通道每通道有16个bins
rgbhist = np.zeros([16 * 16 * 16, 1], np.float32)
bsize = 256 / 16
for row in range(h):
for col in range(w):
b = image[row, col, 0]
g = image[row, col, 1]
r = image[row, col, 2]
# 人为构建直方图矩阵的索引,该索引是通过每一个像素点的三通道值进行构建
index = int(b / bsize) * 16 * 16 + int(g / bsize) * 16 + int(r / bsize)
# 该处形成的矩阵即为直方图矩阵
rgbhist[int(index), 0] += 1
plt.ylim([0, 10000])
plt.grid(color='r', linestyle='--', linewidth=0.5, alpha=0.3)
return rgbhist
def hist_compare(hist1, hist2):
"""直方图比较函数"""
'''# 创建第一幅图的rgb三通道直方图(直方图矩阵)
hist1 = create_rgb_hist(image1)
# 创建第二幅图的rgb三通道直方图(直方图矩阵)
hist2 = create_rgb_hist(image2)'''
# 进行三种方式的直方图比较
match1 = cv.compareHist(hist1, hist2, cv.HISTCMP_BHATTACHARYYA)
match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL)
match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR)
print("巴氏距离:%s, 相关性:%s, 卡方:%s" % (match1, match2, match3))
def handle_img(img):
img = cv.resize(img, (100, 100))
img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
img[:, :, 2] = cv.equalizeHist(img[:, :, 2])
img = cv.cvtColor(img, cv.COLOR_HSV2BGR)
return img
img1 = cv.imread("1.jpg")
img1 = handle_img(img1)
cv.imshow("img1", img1)
img2 = cv.imread("2.jpg")
img2 = handle_img(img2)
cv.imshow("img2", img2)
img3 = cv.imread("3.jpg")
img3 = handle_img(img3)
cv.imshow("img3", img3)
img4 = cv.imread("4.jpg")
img4 = handle_img(img4)
cv.imshow("img4", img4)
hist1 = create_rgb_hist(img1)
hist2 = create_rgb_hist(img2)
hist3 = create_rgb_hist(img3)
hist4 = create_rgb_hist(img4)
plt.subplot(1, 4, 1)
plt.title("hist1")
plt.plot(hist1)
plt.subplot(1, 4, 2)
plt.title("hist2")
plt.plot(hist2)
plt.subplot(1, 4, 3)
plt.title("hist3")
plt.plot(hist3)
plt.subplot(1, 4, 4)
plt.title("hist4")
plt.plot(hist4)
hist_compare(hist1, hist2)
hist_compare(hist2, hist3)
hist_compare(hist3, hist4)
plt.show()
cv.waitKey(0)
cv.destroyAllWindows()
到此这篇关于Opencv判断颜色相似的图片示例代码的文章就介绍到这了,更多相关Opencv判断相似图片内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!