• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Pandas 模糊查询与替换的操作

    主要用到的工具:Pandas 、fuzzywuzzy

    Pandas:是基于numpy的一种工具,专门为分析大量数据而生,它包含大量的处理数据的函数和方法,

    以下为pandas中文API:

    缩写和包导入

    在这个速查手册中,我们使用如下缩写:

    df:任意的Pandas DataFrame对象

    s:任意的Pandas Series对象

    同时我们需要做如下的引入:

    import pandas as pd

    import numpy as np

    导入数据

    pd.read_csv(filename):从CSV文件导入数据

    pd.read_table(filename):从限定分隔符的文本文件导入数据

    pd.read_excel(filename):从Excel文件导入数据

    pd.read_sql(query, connection_object):从SQL表/库导入数据

    pd.read_json(json_string):从JSON格式的字符串导入数据

    pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格

    pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()

    pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据

    导出数据

    df.to_csv(filename):导出数据到CSV文件

    df.to_excel(filename):导出数据到Excel文件

    df.to_sql(table_name, connection_object):导出数据到SQL表

    df.to_json(filename):以Json格式导出数据到文本文件

    创建测试对象

    pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象

    pd.Series(my_list):从可迭代对象my_list创建一个Series对象

    df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引

    查看、检查数据

    df.head(n):查看DataFrame对象的前n行

    df.tail(n):查看DataFrame对象的最后n行

    df.shape():查看行数和列数

    df.info():查看索引、数据类型和内存信息

    df.describe():查看数值型列的汇总统计

    s.value_counts(dropna=False):查看Series对象的唯一值和计数

    df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

    数据选取

    df[col]:根据列名,并以Series的形式返回列

    df[[col1, col2]]:以DataFrame形式返回多列

    s.iloc[0]:按位置选取数据

    s.loc['index_one']:按索引选取数据

    df.iloc[0,:]:返回第一行

    df.iloc[0,0]:返回第一列的第一个元素

    df.values[:,:-1]:返回除了最后一列的其他列的所以数据

    df.query('[1, 2] not in c'): 返回c列中不包含1,2的其他数据集

    数据清理

    df.columns = ['a','b','c']:重命名列名

    pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组

    pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组

    df.dropna():删除所有包含空值的行

    df.dropna(axis=1):删除所有包含空值的列

    df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行

    df.fillna(x):用x替换DataFrame对象中所有的空值

    s.astype(float):将Series中的数据类型更改为float类型

    s.replace(1,'one'):用‘one'代替所有等于1的值

    s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3

    df.rename(columns=lambda x: x + 1):批量更改列名

    df.rename(columns={'old_name': 'new_ name'}):选择性更改列名

    df.set_index('column_one'):更改索引列

    df.rename(index=lambda x: x + 1):批量重命名索引

    数据处理:Filter、Sort和GroupBy

    df[df[col] > 0.5]:选择col列的值大于0.5的行

    df.sort_values(col1):按照列col1排序数据,默认升序排列

    df.sort_values(col2, ascending=False):按照列col1降序排列数据

    df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据

    df.groupby(col):返回一个按列col进行分组的Groupby对象

    df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象

    df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值

    df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表

    df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值

    data.apply(np.mean):对DataFrame中的每一列应用函数np.mean

    data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max

    数据合并

    df1.append(df2):将df2中的行添加到df1的尾部

    df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部

    df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join

    数据统计

    df.describe():查看数据值列的汇总统计

    df.mean():返回所有列的均值

    df.corr():返回列与列之间的相关系数

    df.count():返回每一列中的非空值的个数

    df.max():返回每一列的最大值

    df.min():返回每一列的最小值

    df.median():返回每一列的中位数

    df.std():返回每一列的标准差

    以下为数据处理的代码:

    #!/usr/bin/python
    # -*- encoding: utf-8 
    import numpy as np
    import pandas as pd
    from fuzzywuzzy import fuzz
    from fuzzywuzzy import process 
     
    def enum_row(row):
     print(row['state']) #对state这一列做枚举 
     
    def find_state_code(row):
     if row['state'] != 0:  # 如果这个state的名字存在,就用state的名字与states列表中的值选择一个最接近的,如果小于80分,直接舍弃,大于80才返回
     print(process.extractOne(row['state'], states, score_cutoff=80)) 
     
    def capital(str): # 把str这个字符串,第一个字母大写,其余小写
     return str.capitalize() 
     
    def correct_state(row):
     if row['state'] != 0: # 如果这个state的名字存在,就用state的名字与states列表中的值选择一个最接近的,如果小于80分,直接舍弃,大于80才返回
     state = process.extractOne(row['state'], states, score_cutoff=80)
     if state: # 如果为真,则找到了一个相关性的州名
      state_name = state[0] # 选择用找到的这个州名数据
      return ' '.join(map(capital, state_name.split(' '))) # 先按空格分开(有的州名中间有空格)单词,然后每个单词首字母大写
     return row['state'] 
     
    def fill_state_code(row):
     if row['state'] != 0:
     state = process.extractOne(row['state'], states, score_cutoff=80)
     if state:
      state_name = state[0]
      return state_to_code[state_name] # 返回这个州名的value,即缩写
     return '' 
     
    if __name__ == "__main__":
     pd.set_option('display.width', 200) # 横向最多显示多少个字符, 一般80不适合横向的屏幕,平时多用200.
     data = pd.read_excel('sales.xlsx', sheetname='sheet1', header=0) # 读取excel表
     print('data.head() = \n', data.head()) # 默认显示前五行
     print('data.tail() = \n', data.tail()) # tail显示后五行
     print('data.dtypes = \n', data.dtypes) # 数据类型
     print('data.columns = \n', data.columns)# 显示第一行行名
     for c in data.columns:
     print(c, end=' ') # 输出第一行行名,中间以空格隔开
     print() #相当于回车
     data['total'] = data['Jan'] + data['Feb'] + data['Mar'] # Jan、Feb、Mar三列的值相加得到一个total
     print(data.head())
     print(data['Jan'].sum()) # Jan这一列的值相加
     print(data['Jan'].min()) # Jan这一列的最小值
     print(data['Jan'].max()) # Jan这一列的最大值
     print(data['Jan'].mean()) # Jan这一列的平均值
     
     print('=============')
     # 添加一行
     s1 = data[['Jan', 'Feb', 'Mar', 'total']].sum() # s1包含四个值,分别是这四列的和
     print(s1)
     s2 = pd.DataFrame(data=s1)
     print(s2)
     print(s2.T)
     print(s2.T.reindex(columns=data.columns)) # 将s2进行转置输出
     # 即:
     s = pd.DataFrame(data=data[['Jan', 'Feb', 'Mar', 'total']].sum()).T
     s = s.reindex(columns=data.columns, fill_value=0)
     print(s)
     data = data.append(s, ignore_index=True)
     data = data.rename(index={15:'Total'})
     print(data.tail())
     
     # apply的使用
     print('==============apply的使用==========')
     data.apply(enum_row, axis=1)  # axis=0时对每一列做变换,axis=1时对每一行做变换
     
     # 事先写好以state为单位的编码字典
     state_to_code = {"VERMONT": "VT", "GEORGIA": "GA", "IOWA": "IA", "Armed Forces Pacific": "AP", "GUAM": "GU",
       "KANSAS": "KS", "FLORIDA": "FL", "AMERICAN SAMOA": "AS", "NORTH CAROLINA": "NC", "HAWAII": "HI",
       "NEW YORK": "NY", "CALIFORNIA": "CA", "ALABAMA": "AL", "IDAHO": "ID",
       "FEDERATED STATES OF MICRONESIA": "FM",
       "Armed Forces Americas": "AA", "DELAWARE": "DE", "ALASKA": "AK", "ILLINOIS": "IL",
       "Armed Forces Africa": "AE", "SOUTH DAKOTA": "SD", "CONNECTICUT": "CT", "MONTANA": "MT",
       "MASSACHUSETTS": "MA",
       "PUERTO RICO": "PR", "Armed Forces Canada": "AE", "NEW HAMPSHIRE": "NH", "MARYLAND": "MD",
       "NEW MEXICO": "NM",
       "MISSISSIPPI": "MS", "TENNESSEE": "TN", "PALAU": "PW", "COLORADO": "CO",
       "Armed Forces Middle East": "AE",
       "NEW JERSEY": "NJ", "UTAH": "UT", "MICHIGAN": "MI", "WEST VIRGINIA": "WV", "WASHINGTON": "WA",
       "MINNESOTA": "MN", "OREGON": "OR", "VIRGINIA": "VA", "VIRGIN ISLANDS": "VI",
       "MARSHALL ISLANDS": "MH",
       "WYOMING": "WY", "OHIO": "OH", "SOUTH CAROLINA": "SC", "INDIANA": "IN", "NEVADA": "NV",
       "LOUISIANA": "LA",
       "NORTHERN MARIANA ISLANDS": "MP", "NEBRASKA": "NE", "ARIZONA": "AZ", "WISCONSIN": "WI",
       "NORTH DAKOTA": "ND",
       "Armed Forces Europe": "AE", "PENNSYLVANIA": "PA", "OKLAHOMA": "OK", "KENTUCKY": "KY",
       "RHODE ISLAND": "RI",
       "DISTRICT OF COLUMBIA": "DC", "ARKANSAS": "AR", "MISSOURI": "MO", "TEXAS": "TX", "MAINE": "ME"}
     states = list(state_to_code.keys()) # 把字典中的key拿出来放到states列表中
     print(fuzz.ratio('Python Package', 'PythonPackage')) #计算Python Package与PythonPackage的相似度
     print(process.extract('Mississippi', states)) # Mississippi与states中哪个最接近,并且列出相似比,不考虑大小写
     print(process.extract('Mississipi', states, limit=1)) # limit=1代表只取最接近的一个
     print(process.extractOne('Mississipi', states)) # extractOne代表只取最接近的一个
     data.apply(find_state_code, axis=1) #apply表示对每一行(axis=1)的数据做find_state_code的变换
     
     print('Before Correct State:\n', data['state']) # 打印修改之前的state
     data['state'] = data.apply(correct_state, axis=1) # 检测每一行,并对其修改
     print('After Correct State:\n', data['state'])
     data.insert(5, 'State Code', np.nan) # 插入State Code这一列,为这一列州名的缩写
     data['State Code'] = data.apply(fill_state_code, axis=1)
     print(data)
     
     # group by
     print('==============group by================')
     print(data.groupby('State Code'))
     print('All Columns:\n')
     print(data.groupby('State Code').sum()) # 按州名缩写划分,并将同样州名的数字相加
     print('Short Columns:\n')
     print(data[['State Code', 'Jan', 'Feb', 'Mar', 'total']].groupby('State Code').sum())
     
     # 写入文件
     data.to_excel('sales_result.xls', sheet_name='Sheet1', index=False)

    补充:pandas基于多条件文本模糊查询,list,str.contains()

    针对文本的模糊查询可以用str.contains()进行,但是如果多条件呢,几十个上百个,不能一个一个去查询。

    思路是

    1.将多条件简历在一个列表里

    2.通过列表推导式加str.contains()函数和sum()函数求和

    3.通过loc筛选出我们需要的本文的内容

    创建

    需要筛选的内容words列表,之后进行筛选、

    下面显示的是sum函数里的内容的最后形式,1和2都相当于True,0代表False

    有时间写一个更简单的的另一种多条件模糊筛选。

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • Pandas的数据过滤实现
    • Python遍历pandas数据方法总结
    • python中数据库like模糊查询方式
    • 解决一个pandas执行模糊查询sql的坑
    上一篇:pandas 查询函数query的用法说明
    下一篇:python中判断集合范围的方法小结
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Pandas 模糊查询与替换的操作 Pandas,模糊,查询,与,替换,