• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Pytorch之扩充tensor的操作

    我就废话不多说了,大家还是直接看代码吧~

    b = torch.zeros((3, 2, 6, 6))
    a = torch.zeros((3, 2, 1, 1))
    a.expand_as(b).size()
    Out[32]: torch.Size([3, 2, 6, 6])
    a = torch.zeros((3, 2, 2, 1))
    a.expand_as(b).size()
    Traceback (most recent call last):
     File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
     File "ipython-input-34-972575f79e92>", line 1, in module>
      a.expand_as(b).size()
    RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 2. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 2, 1]
    a = torch.zeros((3, 2, 1, 2))
    a.expand_as(b).size()
    Traceback (most recent call last):
     File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
     File "ipython-input-36-972575f79e92>", line 1, in module>
      a.expand_as(b).size()
    RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 1, 2]
    a = torch.zeros((3, 2, 2, 2))
    a.expand_as(b).size()
    Traceback (most recent call last):
     File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
     File "ipython-input-38-972575f79e92>", line 1, in module>
      a.expand_as(b).size()
    RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 2, 2]
    a = torch.zeros((3, 2, 6, 2))
    a.expand_as(b).size()
    Traceback (most recent call last):
     File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
     File "ipython-input-40-972575f79e92>", line 1, in module>
      a.expand_as(b).size()
    RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 6, 2]
    a = torch.zeros((3, 2, 6, 1))
    a.expand_as(b).size()
    Out[44]: torch.Size([3, 2, 6, 6])
    a = torch.zeros((3, 2, 1, 6))
    a.expand_as(b).size()
    Out[46]: torch.Size([3, 2, 6, 6])
    

    tensor.expand_as在这里用于扩展tensor到目标形状,常用的多是在H和W方向上的扩展。

    假设目标形状为N, C, H, W,则要求tensor.size()=n, c, h, w(这里假设N,C不变):

    1、h=w=1

    2、h=1, w!=1

    3、h!=1, w=1

    补充:tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度

    在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。

    比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉。

    tf.expand_dims()

    tf.squeeze()

    tf.expand_dims()

    tf.expand_dims(input, axis=None, name=None, dim=None)

    在第axis位置增加一个维度.

    给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。

    如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

    例子

    # 't' is a tensor of shape [2]
    shape(expand_dims(t, 0)) ==> [1, 2]
    shape(expand_dims(t, 1)) ==> [2, 1]
    shape(expand_dims(t, -1)) ==> [2, 1]
    # 't2' is a tensor of shape [2, 3, 5]
    shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
    shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
    shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

    tf.squeeze()

    tf.squeeze(input, axis=None, name=None, squeeze_dims=None)

    直接上例子

    # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
     shape(squeeze(t)) ==> [2, 3]
    # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
     shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
    

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • PyTorch中Tensor的数据类型和运算的使用
    • 对Pytorch中Tensor的各种池化操作解析
    • 详解PyTorch中Tensor的高阶操作
    • pytorch教程之Tensor的值及操作使用学习
    上一篇:快速一键生成Python爬虫请求头
    下一篇:Python画笔的属性及用法详解
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Pytorch之扩充tensor的操作 Pytorch,之,扩充,tensor,的,