目的:
把训练好的pth模型参数提取出来,然后用其他方式部署到边缘设备。
Pytorch给了很方便的读取参数接口:
直接看demo:
from torchvision.models.alexnet import alexnet
model = alexnet(pretrained=True).eval().cuda()
parameters = model.parameters()
for p in parameters:
numpy_para = p.detach().cpu().numpy()
print(type(numpy_para))
print(numpy_para.shape)
上面得到的numpy_para就是numpy参数了~
Note:
model.parameters()是以一个生成器的形式迭代返回每一层的参数。所以用for循环读取到各层的参数,循环次数就表示层数。
而每一层的参数都是torch.nn.parameter.Parameter类型,是Tensor的子类,所以直接用tensor转numpy(即p.detach().cpu().numpy())的方法就可以直接转成numpy矩阵。
方便又好用,爆赞~
补充:pytorch训练好的.pth模型转换为.pt
将python训练好的.pth文件转为.pt
import torch
import torchvision
from unet import UNet
model = UNet(3, 2)#自己定义的网络模型
model.load_state_dict(torch.load("best_weights.pth"))#保存的训练模型
model.eval()#切换到eval()
example = torch.rand(1, 3, 320, 480)#生成一个随机输入维度的输入
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。
您可能感兴趣的文章:- Numpy实现矩阵运算及线性代数应用
- numpy数组合并和矩阵拼接的实现
- numpy和tensorflow中的各种乘法(点乘和矩阵乘)
- NumPy 矩阵乘法的实现示例
- Python numpy大矩阵运算内存不足如何解决
- 使用numpy实现矩阵的翻转(flip)与旋转