显示索引和隐式索引
import pandas as pd
df = pd.DataFrame({'姓名':['张三','李四','王五'],'成绩':[85,59,76]})
传入冒号‘:',表示所有行或者列
显示索引:.loc,第一个参数为 index切片,第二个为 columns列名
df.loc[2] #index为2的记录,这里是王五的成绩。
df.loc[:,'姓名'] #第一个参数为冒号,表示所有行,这里是筛选姓名这列记录。
隐式索引:.iloc(integer_location), 只能传入整数。
df.iloc[:2,:] #张三和李四的成绩,跟列表切片一样,冒号左闭右开。
df.iloc[:,'成绩'] #输入中文,这里就报错了,只能使用整数。
也可以使用at定位到某个元素
语法规则:df.at[index,columns]
df.at[1,'成绩'] #使用索引标签,李四的成绩
df.iat[1,1] #类似于iloc使用隐式索引访问某个元素
补充:pandas快速定位某一列中存在某值的所有行,loc, at, ==对比
如下所示:
from datetime import datetime
from time import time
直接方括号定位相等的列
start = time()
for disk in goodDiskName2016[:100]:
____ST4000DM000_2016_good_feature27[ST4000DM000_2016_good_feature27.serial_number==disk][features27[0]]
time()-start
消耗时间
直接loc定位相等的
start = time()
for disk in goodDiskName2016[:100]: ____ST4000DM000_2016_good_feature27.loc[ST4000DM000_2016_good_feature27.serial_number==disk][features27[0]]
time()-start
消耗时间:
先将这一列设置为index,然后通过loc查找
b = ST4000DM000_2016_good_feature27.set_index('serial_number')
start = time()
for disk in goodDiskName2016[:100]:
b.loc[disk][features27[0]]
time()-start
消耗时间:
设置为index后用at定位
start = time()
for disk in goodDiskName2016[:100]:
b.at[disk,features27[0]]
time()-start
消耗时间:
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。
您可能感兴趣的文章:- Python基础之pandas数据合并
- python-pandas创建Series数据类型的操作
- Python数据分析之pandas函数详解
- python基于Pandas读写MySQL数据库
- pandas读取excel时获取读取进度的实现
- 浅谈Pandas dataframe数据处理方法的速度比较
- 解决使用pandas聚类时的小坑
- pandas 使用merge实现百倍加速的操作
- 详细介绍在pandas中创建category类型数据的几种方法
- python中pandas.read_csv()函数的深入讲解
- pandas 颠倒列顺序的两种解决方案
- pandas调整列的顺序以及添加列的实现
- pandas快速处理Excel,替换Nan,转字典的操作
- Python基础之教你怎么在M1系统上使用pandas