本文主要介绍了Python利用numpy实现三层神经网络的示例代码,分享给大家,具体如下:
其实神经网络很好实现,稍微有点基础的基本都可以实现出来.主要都是利用上面这个公式来做的。
这是神经网络的整体框架,一共是三层,分为输入层,隐藏层,输出层。现在我们先来讲解下从输出层到到第一个隐藏层。
使用的编译器是jupyter notebook
import numpy as np
#定义X,W1,B1
X = np.array([1.0, 0.5])
w1 = np.array([[0.1, 0.3, 0.5],[0.2, 0.4, 0.6]])
b1 = np.array([0.1, 0.2, 0.3])
#查看他们的形状
print(X.shape)
print(w1.shape)
print(b1.shape)
def sigmod(x):
return 1/(1 + np.exp(-x))
Z1 = sigmod(A1)
Z1
#定义w2,b2
w2 = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
b2 = np.array([0.1,0.2])
#查看他们的行状
print(w2.shape)
print(b2.shape)
A2 = np.dot(Z1,w2) + b2
A2
#定义恒等函数
def identity_function(x):
return x
#定义w3,b3
w3 = np.array([[0.1,0.3],[0.2,0.4]])
b3 = np.array([0.1,0.2])
A3 = np.dot(Z2,w3) + b3
Y = identity_function(A3)
Y
将上面的整合一下
#整理
#定义一个字典,将权重全部放入字典
def init_network():
network = {}
network['w1'] = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
network['w2'] = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
network['w3'] = np.array([[0.1,0.3],[0.2,0.4]])
network['b1'] = np.array([0.1, 0.2, 0.3])
network['b2'] = np.array([0.1,0.2])
network['b3'] = np.array([0.1,0.2])
return network
#定义函数,导入权重与x,得到Y
def forward(network,x):
w1,w2,w3 = network['w1'],network['w2'],network['w3']
b1,b2,b3 = network['b1'],network['b2'],network['b3']
A1 = np.dot(x,w1) + b1
A2 = np.dot(A1,w2) + b2
A3 = np.dot(A2,w3) + b3
Y = identity_function(A3)
Y
#调用函数
network = init_network()
X = np.array([1.0,0.5])
Y = forward(network,X)
到此这篇关于Python利用numpy实现三层神经网络的示例代码的文章就介绍到这了,更多相关numpy三层神经网络内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:- Numpy实现卷积神经网络(CNN)的示例
- numpy实现神经网络反向传播算法的步骤
- 纯用NumPy实现神经网络的示例代码
- Python使用numpy实现BP神经网络
- Python基于numpy灵活定义神经网络结构的方法
- numpy创建神经网络框架