• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Python基础之numpy库的使用

    numpy库概述

    numpy库处理的最基础数据类型是由同种元素构成的多维数组,简称为“数组”

    数组的特点

    ndarray类型的维度叫做轴,轴的个数叫做秩

    numpy库的解析

    由于numpy库中函数较多而且容易与常用命名混淆,建议采用如下方法引用numpy库

    import numpy as np

    numpy库中常用的创建数组函数

    函数 描述
    np.array([x,y,z],dtype=int) 从Python列表和元组中创建数组
    np.arange(x,y,i) 创建一个由x到y,以i为步长的数组
    np.linspace(x,y,n) 创建一个由x到y,等分成n个元素的数组
    np.indices((m,n)) 创建一个m行n列的矩阵
    np.random.rand(m,n) 创建一个m行n列的随机数组
    np.ones((m,n),dtype) 创建一个m行n列全1的数组,dtype是数据类型
    np.empty((m,n),dtype) 创建一个m行n列全0的数组,dtype是数据类型
    import numpy as np
    a1 = np.array([1,2,3,4,5,6])
    a2 = np.arange(1,10,3)
    a3 = np.linspace(1,10,3)
    a4 = np.indices((3,4))
    a5 = np.random.rand(3,4)
    a6 = np.ones((3,4),int)
    a7 = np.empty((3,4),int)
    print(a1)
    print("===========================================================")
    print(a2)
    print("===========================================================")
    print(a3)
    print("===========================================================")
    print(a4)
    print("===========================================================")
    print(a5)
    print("===========================================================")
    print(a6)
    print("===========================================================")
    print(a7)
    =================================================================================
    [1 2 3 4 5 6]
    ===========================================================
    [1 4 7]
    ===========================================================
    [ 1.   5.5 10. ]
    ===========================================================
    [[[0 0 0 0]
      [1 1 1 1]
      [2 2 2 2]]
    
     [[0 1 2 3]
      [0 1 2 3]
      [0 1 2 3]]]
    ===========================================================
    [[0.00948155 0.7145306  0.50490391 0.69827703]
     [0.18164292 0.78440752 0.75091258 0.31184394]
     [0.17199081 0.3789     0.69886588 0.0476422 ]]
    ===========================================================
    [[1 1 1 1]
     [1 1 1 1]
     [1 1 1 1]]
    ===========================================================
    [[0 0 0 0]
     [0 0 0 0]
     [0 0 0 0]]
    

    在建立一个简单的数组后,可以查看数组的属性

    属性 描述
    ndarray.ndim 数组轴的个数,也被称为秩
    ndarray.shape 数组在每个维度上大小的整数元组
    ndarray.size 数组元素的总个数
    ndarray.dtype 数组元素的数据类型,dtype类型可以用于创建数组
    ndarray.itemsize 数组中每个元素的字节大小
    ndarray.data 包含实际数组元素的缓冲区地址
    ndarray.flat 数组元素的迭代器
    import numpy as np
    a6 = np.ones((3,4),int)
    print(a6)
    print("=========================================")
    print(a6.ndim)
    print("=========================================")
    print(a6.shape)
    print("=========================================")
    print(a6.size)
    print("=========================================")
    print(a6.dtype)
    print("=========================================")
    print(a6.itemsize)
    print("=========================================")
    print(a6.data)
    print("=========================================")
    print(a6.flat)
    =================================================================================
    [[1 1 1 1]
     [1 1 1 1]
     [1 1 1 1]]
    =========================================
    2
    =========================================
    (3, 4)
    =========================================
    12
    =========================================
    int32
    =========================================
    4
    =========================================
    memory at 0x0000020D79545908>
    =========================================
    numpy.flatiter object at 0x0000020D103B1180>
    

    数组在numpy中被当做对象,可以采用 a >. b >()方式调用一些方法。

    ndarray类的形态操作方法

    方法 描述
    ndarray.reshape(n,m) 不改变数组ndarray,返回一个维度为(n,m)的数组
    ndarray.resize(new_shape) 与reshape()作用相同,直接修改数组ndarray
    ndarray.swapaxes(ax1,ax2) 将数组n个维度中任意两个维度进行调换
    ndarray.flatten() 对数组进行降维,返回一个折叠后的一维数组
    ndarray.ravel() 作用同np.flatten(),但返回的是一个视图

    ndarray类的索引和切片方法

    方法 描述
    x[i] 索引第i个元素
    x[-i] 从后向前索引第i个元素
    x[n:m] 默认步长为1,从前向后索引,不包含m
    x[-m:-n] 默认步长为1,从前向后索引,结束位置为n
    x[n: m :i] 指定i步长的由n到m的索引

    除了ndarray类型方法外,numpy库提供了一匹运算函数

    函数 描述
    np.add(x1,x2[,y]) y = x1 + x2
    np.subtract(x1,x2[,y]) y = x1 -x2
    np.multiply(x1,x2[,y]) y = x1 * x2
    np.divide(x1,x2[,y]) y = x1 /x2
    np floor_divide(x1,x2[,y]) y = x1 // x2
    np.negative(x[,y]) y = -x
    np.power(x1,x2[,y]) y = x1 ** x2
    np.remainder(x1,x2[,y]) y = x1 % x2

    numpy库的比较运算函数

    函数 符号描述
    np.equal(x1,x2[,y]) y = x1 == x2
    np.not_equal(x1,x2[,y]) y = x1 != x2
    np.less(x1,x2,[,y]) y = x1 x2
    np.less_equal(x1,x2,[,y]) y = x1 = x2
    np.greater(x1,x2,[,y]) y = x1 > x2
    np.greater_equal(x1,x2,[,y]) y >= x1 >= x2
    np.where(condition[x,y]) 根据条件判断是输出x还是y

    numpy库的其他运算函数

    函数 描述
    np.abs(x) 计算济源元素的整形、浮点、或复数的绝对值
    np.sqrt(x) 计算每个元素的平方根
    np.squre(x) 计算每个元素的平方
    np.sign(x) 计算每个元素的符号1(+),0,-1(-)
    np.ceil(x) 计算大于或等于每个元素的最小值
    np.floor(x) 计算小于或等于每个元素的最大值
    np.rint(x[,out]) 圆整,取每个元素为最近的整数,保留数据类型
    np.exp(x[,out]) 计算每个元素的指数值
    np.log(x),np.log10(x),np.log2(x) 计算自然对数(e),基于10,,2的对数,log(1+x)

    到此这篇关于Python基础之numpy库的使用的文章就介绍到这了,更多相关Python numpy库的使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    您可能感兴趣的文章:
    • Python 机器学习库 NumPy入门教程
    • Python基础之Numpy的基本用法详解
    • Python利用numpy实现三层神经网络的示例代码
    • Python数据清洗工具之Numpy的基本操作
    • python numpy中setdiff1d的用法说明
    • Python Numpy之linspace用法说明
    • python 将numpy维度不同的数组相加相乘操作
    • python numpy.power()数组元素求n次方案例
    • python中numpy.empty()函数实例讲解
    • python中numpy数组与list相互转换实例方法
    • Python OpenCV中的numpy与图像类型转换操作
    • Python机器学习三大件之一numpy
    上一篇:Python图像处理之图像拼接
    下一篇:win10系统配置GPU版本Pytorch的详细教程
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Python基础之numpy库的使用 Python,基础,之,numpy,库,的,