• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    Pytorch 统计模型参数量的操作 param.numel()

    param.numel()

    返回param中元素的数量

    统计模型参数量

    num_params = sum(param.numel() for param in net.parameters())
    print(num_params)

    补充:Pytorch 查看模型参数

    Pytorch 查看模型参数

    查看利用Pytorch搭建模型的参数,直接看程序

    import torch
    # 引入torch.nn并指定别名
    import torch.nn as nn
    import torch.nn.functional as F
    
    class Net(nn.Module):
        def __init__(self):
            # nn.Module子类的函数必须在构造函数中执行父类的构造函数
            super(Net, self).__init__()
            
            # 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'3'表示卷积核为3*3
            self.conv1 = nn.Conv2d(1, 6, 3) 
            #线性层,输入1350个特征,输出10个特征
            self.fc1   = nn.Linear(1350, 10)  #这里的1350是如何计算的呢?这就要看后面的forward函数
        #正向传播 
        def forward(self, x): 
            print(x.size()) # 结果:[1, 1, 32, 32]
            # 卷积 -> 激活 -> 池化 
            x = self.conv1(x) #根据卷积的尺寸计算公式,计算结果是30,具体计算公式后面第二张第四节 卷积神经网络 有详细介绍。
            x = F.relu(x)
            print(x.size()) # 结果:[1, 6, 30, 30]
            x = F.max_pool2d(x, (2, 2)) #我们使用池化层,计算结果是15
            x = F.relu(x)
            print(x.size()) # 结果:[1, 6, 15, 15]
            # reshape,‘-1'表示自适应
            #这里做的就是压扁的操作 就是把后面的[1, 6, 15, 15]压扁,变为 [1, 1350]
            x = x.view(x.size()[0], -1) 
            print(x.size()) # 这里就是fc1层的的输入1350 
            x = self.fc1(x)        
            return x
    
    net = Net()
    
    for parameters in net.parameters():
        print(parameters)
    

    输出为:

    Parameter containing:
    tensor([[[[-0.0104, -0.0555, 0.1417],
    [-0.3281, -0.0367, 0.0208],
    [-0.0894, -0.0511, -0.1253]]],


    [[[-0.1724, 0.2141, -0.0895],
    [ 0.0116, 0.1661, -0.1853],
    [-0.1190, 0.1292, -0.2451]]],


    [[[ 0.1827, 0.0117, 0.2880],
    [ 0.2412, -0.1699, 0.0620],
    [ 0.2853, -0.2794, -0.3050]]],


    [[[ 0.1930, 0.2687, -0.0728],
    [-0.2812, 0.0301, -0.1130],
    [-0.2251, -0.3170, 0.0148]]],


    [[[-0.2770, 0.2928, -0.0875],
    [ 0.0489, -0.2463, -0.1605],
    [ 0.1659, -0.1523, 0.1819]]],


    [[[ 0.1068, 0.2441, 0.3160],
    [ 0.2945, 0.0897, 0.2978],
    [ 0.0419, -0.0739, -0.2609]]]])
    Parameter containing:
    tensor([ 0.0782, 0.2679, -0.2516, -0.2716, -0.0084, 0.1401])
    Parameter containing:
    tensor([[ 1.8612e-02, 6.5482e-03, 1.6488e-02, ..., -1.3283e-02,
    1.8715e-02, 5.4037e-03],
    [ 1.8569e-03, 1.8022e-02, -2.3465e-02, ..., 1.6527e-03,
    2.0443e-02, -2.2009e-02],
    [ 9.9104e-03, 6.6134e-03, -2.7171e-02, ..., -5.7119e-03,
    2.4532e-02, 2.2284e-02],
    ...,
    [ 6.9182e-03, 1.7279e-02, -1.7783e-03, ..., 1.9354e-02,
    2.1105e-03, 8.6245e-03],
    [ 1.6877e-02, -1.2414e-02, 2.2409e-02, ..., -2.0604e-02,
    1.3253e-02, -3.6008e-03],
    [-2.1598e-02, 2.5892e-02, 1.9372e-02, ..., 1.4159e-02,
    7.0983e-03, -2.3713e-02]])
    Parameter containing:
    tensor(1.00000e-02 *
    [ 1.4703, 1.0289, 2.5069, -2.2603, -1.5218, -1.7019, 1.2569,
    0.4617, -2.3082, -0.6282])

    for name,parameters in net.named_parameters():
        print(name,':',parameters.size())
    

    输出:

    conv1.weight : torch.Size([6, 1, 3, 3])
    conv1.bias : torch.Size([6])
    fc1.weight : torch.Size([10, 1350])
    fc1.bias : torch.Size([10])

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • pytorch固定BN层参数的操作
    • pytorch 如何自定义卷积核权值参数
    • pytorch交叉熵损失函数的weight参数的使用
    • pytorch 一行代码查看网络参数总量的实现
    • pytorch查看网络参数显存占用量等操作
    • pytorch 优化器(optim)不同参数组,不同学习率设置的操作
    • pytorch LayerNorm参数的用法及计算过程
    上一篇:Python机器学习算法之决策树算法的实现与优缺点
    下一篇:Python数据分析入门之教你怎么搭建环境
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    Pytorch 统计模型参数量的操作 param.numel() Pytorch,统计,模型,参,数量,