• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    pytorch中的numel函数用法说明

    获取tensor中一共包含多少个元素

    import torch
    x = torch.randn(3,3)
    print("number elements of x is ",x.numel())
    y = torch.randn(3,10,5)
    print("number elements of y is ",y.numel())

    输出:

    number elements of x is 9

    number elements of y is 150

    27和150分别位x和y中各有多少个元素或变量

    补充:pytorch获取张量元素个数numel()的用法

    numel就是"number of elements"的简写。

    numel()可以直接返回int类型的元素个数

    import torch 
    a = torch.randn(1, 2, 3, 4)
    b = a.numel()
    print(type(b)) # int
    print(b) # 24

    通过numel()函数,我们可以迅速查看一个张量到底又多少元素。

    补充:pytorch 卷积结构和numel()函数

    看代码吧~

    from torch import nn 
    class CNN(nn.Module):
        def __init__(self, num_channels=1, d=56, s=12, m=4):
            super(CNN, self).__init__()
            self.first_part = nn.Sequential(
                nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2),
                nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2),
                nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2),
                nn.PReLU(d)
            )
     
        def forward(self, x):
            x = self.first_part(x)
            return x
     
    model = CNN()
    for m in model.first_part:
        if isinstance(m, nn.Conv2d):
            # print('m:',m.weight.data)
            print('m:',m.weight.data[0])
            print('m:',m.weight.data[0][0])
            print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数
     
    结果:
    m: tensor([[[-0.2822,  0.0128, -0.0244],
             [-0.2329,  0.1037,  0.2262],
             [ 0.2845, -0.3094,  0.1443]]]) #卷积核大小为3x3
    m: tensor([[-0.2822,  0.0128, -0.0244],
            [-0.2329,  0.1037,  0.2262],
            [ 0.2845, -0.3094,  0.1443]]) #卷积核大小为3x3
    m: 504   # = 56 x (3 x 3)  输出通道数为56,卷积核大小为3x3
    m: tensor([-0.0335,  0.2945,  0.2512,  0.2770,  0.2071,  0.1133, -0.1883,  0.2738,
             0.0805,  0.1339, -0.3000, -0.1911, -0.1760,  0.2855, -0.0234, -0.0843,
             0.1815,  0.2357,  0.2758,  0.2689, -0.2477, -0.2528, -0.1447, -0.0903,
             0.1870,  0.0945, -0.2786, -0.0419,  0.1577, -0.3100, -0.1335, -0.3162,
            -0.1570,  0.3080,  0.0951,  0.1953,  0.1814, -0.1936,  0.1466, -0.2911,
            -0.1286,  0.3024,  0.1143, -0.0726, -0.2694, -0.3230,  0.2031, -0.2963,
             0.2965,  0.2525, -0.2674,  0.0564, -0.3277,  0.2185, -0.0476,  0.0558]) bias偏置的值
    m: tensor([[[ 0.5747, -0.3421,  0.2847]]]) 卷积核大小为1x3
    m: tensor([[ 0.5747, -0.3421,  0.2847]]) 卷积核大小为1x3
    m: 168 # = 56 x (1 x 3) 输出通道数为56,卷积核大小为1x3
    m: tensor([ 0.5328, -0.5711, -0.1945,  0.2844,  0.2012, -0.0084,  0.4834, -0.2020,
            -0.0941,  0.4683, -0.2386,  0.2781, -0.1812, -0.2990, -0.4652,  0.1228,
            -0.0627,  0.3112, -0.2700,  0.0825,  0.4345, -0.0373, -0.3220, -0.5038,
            -0.3166, -0.3823,  0.3947, -0.3232,  0.1028,  0.2378,  0.4589,  0.1675,
            -0.3112, -0.0905, -0.0705,  0.2763,  0.5433,  0.2768, -0.3804,  0.4855,
            -0.4880, -0.4555,  0.4143,  0.5474,  0.3305, -0.0381,  0.2483,  0.5133,
            -0.3978,  0.0407,  0.2351,  0.1910, -0.5385,  0.1340,  0.1811, -0.3008]) bias偏置的值
    m: tensor([[[0.0184],
             [0.0981],
             [0.1894]]]) 卷积核大小为3x1
    m: tensor([[0.0184],
            [0.0981],
            [0.1894]]) 卷积核大小为3x1
    m: 168 # = 56 x (3 x 1) 输出通道数为56,卷积核大小为3x1
    m: tensor([-0.2951, -0.4475,  0.1301,  0.4747, -0.0512,  0.2190,  0.3533, -0.1158,
             0.2237, -0.1407, -0.4756,  0.1637, -0.4555, -0.2157,  0.0577, -0.3366,
            -0.3252,  0.2807,  0.1660,  0.2949, -0.2886, -0.5216,  0.1665,  0.2193,
             0.2038, -0.1357,  0.2626,  0.2036,  0.3255,  0.2756,  0.1283, -0.4909,
             0.5737, -0.4322, -0.4930, -0.0846,  0.2158,  0.5565,  0.3751, -0.3775,
            -0.5096, -0.4520,  0.2246, -0.5367,  0.5531,  0.3372, -0.5593, -0.2780,
            -0.5453, -0.2863,  0.5712, -0.2882,  0.4788,  0.3222, -0.4846,  0.2170]) bias偏置的值
      
    '''初始化后'''
    class CNN(nn.Module):
        def __init__(self, num_channels=1, d=56, s=12, m=4):
            super(CNN, self).__init__()
            self.first_part = nn.Sequential(
                nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2),
                nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2),
                nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2),
                nn.PReLU(d)
            )
            self._initialize_weights()
        def _initialize_weights(self):
            for m in self.first_part:
                if isinstance(m, nn.Conv2d):
                    nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))
                    nn.init.zeros_(m.bias.data)
     
        def forward(self, x):
            x = self.first_part(x)
            return x
     
    model = CNN()
    for m in model.first_part:
        if isinstance(m, nn.Conv2d):
            # print('m:',m.weight.data)
            print('m:',m.weight.data[0])
            print('m:',m.weight.data[0][0])
            print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数
     
    结果:
    m: tensor([[[-0.0284, -0.0585,  0.0271],
             [ 0.0125,  0.0554,  0.0511],
             [-0.0106,  0.0574, -0.0053]]])
    m: tensor([[-0.0284, -0.0585,  0.0271],
            [ 0.0125,  0.0554,  0.0511],
            [-0.0106,  0.0574, -0.0053]])
    m: 504
    m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0.])
    m: tensor([[[ 0.0059,  0.0465, -0.0725]]])
    m: tensor([[ 0.0059,  0.0465, -0.0725]])
    m: 168
    m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0.])
    m: tensor([[[ 0.0599],
             [-0.1330],
             [ 0.2456]]])
    m: tensor([[ 0.0599],
            [-0.1330],
            [ 0.2456]])
    m: 168
    m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0.])
     

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

    您可能感兴趣的文章:
    • Pytorch Tensor基本数学运算详解
    • 详解PyTorch中Tensor的高阶操作
    • PyTorch中Tensor的数据类型和运算的使用
    • Pytorch之contiguous的用法
    上一篇:如何使用python提取字符串的中英文(正则判断)
    下一篇:Python爬虫基础之爬虫的分类知识总结
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    pytorch中的numel函数用法说明 pytorch,中的,numel,函数,用法,