• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    在pytorch中计算准确率,召回率和F1值的操作

    看代码吧~

    predict = output.argmax(dim = 1)
    confusion_matrix =torch.zeros(2,2)
    for t, p in zip(predict.view(-1), target.view(-1)):
        confusion_matrix[t.long(), p.long()] += 1
    a_p =(confusion_matrix.diag() / confusion_matrix.sum(1))[0]
    b_p = (confusion_matrix.diag() / confusion_matrix.sum(1))[1]
    a_r =(confusion_matrix.diag() / confusion_matrix.sum(0))[0]
    b_r = (confusion_matrix.diag() / confusion_matrix.sum(0))[1]

    补充:pytorch 查全率 recall 查准率 precision F1调和平均 准确率 accuracy

    看代码吧~

    def eval():
        net.eval()
        test_loss = 0
        correct = 0
        total = 0
        classnum = 9
        target_num = torch.zeros((1,classnum))
        predict_num = torch.zeros((1,classnum))
        acc_num = torch.zeros((1,classnum))
        for batch_idx, (inputs, targets) in enumerate(testloader):
            if use_cuda:
                inputs, targets = inputs.cuda(), targets.cuda()
            inputs, targets = Variable(inputs, volatile=True), Variable(targets)
            outputs = net(inputs)
            loss = criterion(outputs, targets)
            # loss is variable , if add it(+=loss) directly, there will be a bigger ang bigger graph.
            test_loss += loss.data[0]
            _, predicted = torch.max(outputs.data, 1)
            total += targets.size(0)
            correct += predicted.eq(targets.data).cpu().sum()
            pre_mask = torch.zeros(outputs.size()).scatter_(1, predicted.cpu().view(-1, 1), 1.)
            predict_num += pre_mask.sum(0)
            tar_mask = torch.zeros(outputs.size()).scatter_(1, targets.data.cpu().view(-1, 1), 1.)
            target_num += tar_mask.sum(0)
            acc_mask = pre_mask*tar_mask
            acc_num += acc_mask.sum(0)
        recall = acc_num/target_num
        precision = acc_num/predict_num
        F1 = 2*recall*precision/(recall+precision)
        accuracy = acc_num.sum(1)/target_num.sum(1)
    #精度调整
        recall = (recall.numpy()[0]*100).round(3)
        precision = (precision.numpy()[0]*100).round(3)
        F1 = (F1.numpy()[0]*100).round(3)
        accuracy = (accuracy.numpy()[0]*100).round(3)
    # 打印格式方便复制
        print('recall'," ".join('%s' % id for id in recall))
        print('precision'," ".join('%s' % id for id in precision))
        print('F1'," ".join('%s' % id for id in F1))
        print('accuracy',accuracy)

    补充:Python scikit-learn,分类模型的评估,精确率和召回率,classification_report

    分类模型的评估标准一般最常见使用的是准确率(estimator.score()),即预测结果正确的百分比。

    混淆矩阵:

    准确率是相对所有分类结果;精确率、召回率、F1-score是相对于某一个分类的预测评估标准。

    精确率(Precision):预测结果为正例样本中真实为正例的比例(查的准)(

    召回率(Recall):真实为正例的样本中预测结果为正例的比例(查的全)(

    分类的其他评估标准:F1-score,反映了模型的稳健型


    demo.py(分类评估,精确率、召回率、F1-score,classification_report):

    from sklearn.datasets import fetch_20newsgroups
    from sklearn.model_selection import train_test_split
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import classification_report
     
    # 加载数据集 从scikit-learn官网下载新闻数据集(共20个类别)
    news = fetch_20newsgroups(subset='all')  # all表示下载训练集和测试集
     
    # 进行数据分割 (划分训练集和测试集)
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)
     
    # 对数据集进行特征抽取 (进行特征提取,将新闻文档转化成特征词重要性的数字矩阵)
    tf = TfidfVectorizer()  # tf-idf表示特征词的重要性
    # 以训练集数据统计特征词的重要性 (从训练集数据中提取特征词)
    x_train = tf.fit_transform(x_train)
     
    print(tf.get_feature_names())  # ["condensed", "condescend", ...]
     
    x_test = tf.transform(x_test)  # 不需要重新fit()数据,直接按照训练集提取的特征词进行重要性统计。
     
    # 进行朴素贝叶斯算法的预测
    mlt = MultinomialNB(alpha=1.0)  # alpha表示拉普拉斯平滑系数,默认1
    print(x_train.toarray())  # toarray() 将稀疏矩阵以稠密矩阵的形式显示。
    '''
    [[ 0.     0.          0.   ...,  0.04234873  0.   0. ]
     [ 0.     0.          0.   ...,  0.          0.   0. ]
     ...,
     [ 0.     0.03934786  0.   ...,  0.          0.   0. ]
    '''
    mlt.fit(x_train, y_train)  # 填充训练集数据
     
    # 预测类别
    y_predict = mlt.predict(x_test)
    print("预测的文章类别为:", y_predict)  # [4 18 8 ..., 15 15 4]
     
    # 准确率
    print("准确率为:", mlt.score(x_test, y_test))  # 0.853565365025
     
    print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))
    '''
                    precision  recall  f1-score  support
        alt.atheism   0.86      0.66     0.75      207
      comp.graphics   0.85      0.75     0.80      238
     sport.baseball   0.96      0.94     0.95      253
     ...,
    '''
     

    召回率的意义(应用场景):产品的不合格率(不想漏掉任何一个不合格的产品,查全);癌症预测(不想漏掉任何一个癌症患者)

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • Pytorch 实现计算分类器准确率(总分类及子分类)
    • Pytorch 计算误判率,计算准确率,计算召回率的例子
    • pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率
    上一篇:python流水线框架pypeln的安装使用教程
    下一篇:python 如何把classification_report输出到csv文件
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    在pytorch中计算准确率,召回率和F1值的操作 在,pytorch,中,计算,准确率,