• 企业400电话
  • 微网小程序
  • AI电话机器人
  • 电商代运营
  • 全 部 栏 目

    企业400电话 网络优化推广 AI电话机器人 呼叫中心 网站建设 商标✡知产 微网小程序 电商运营 彩铃•短信 增值拓展业务
    解决tensorflow 与keras 混用之坑

    在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下

    其中错误为:TypeError: tuple indices must be integers, not list

    再一一番百度后无结果,上谷歌后找到了类似的问题。但是是一对鸟文不知道什么东西(翻译后发现是俄文)。后来谷歌翻译了一下找到了解决方法。故将原始问题文章贴上来警示一下

    原训练代码

    from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
    from tensorflow.python.keras.models import Sequential
    from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
    from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
     
    #Каталог с данными для обучения
    train_dir = 'train'
    # Каталог с данными для проверки
    val_dir = 'val'
    # Каталог с данными для тестирования
    test_dir = 'val'
     
    # Размеры изображения
    img_width, img_height = 800, 800
    # Размерность тензора на основе изображения для входных данных в нейронную сеть
    # backend Tensorflow, channels_last
    input_shape = (img_width, img_height, 3)
    # Количество эпох
    epochs = 1
    # Размер мини-выборки
    batch_size = 4
    # Количество изображений для обучения
    nb_train_samples = 300
    # Количество изображений для проверки
    nb_validation_samples = 25
    # Количество изображений для тестирования
    nb_test_samples = 25
     
    model = Sequential()
     
    model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(10, 10)))
     
    model.add(Conv2D(64, (5, 5), padding="same"))
    model.add(BatchNormalization())
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(10, 10)))
     
    model.add(Flatten())
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
     
    model.compile(loss='categorical_crossentropy',
                  optimizer="Nadam",
                  metrics=['accuracy'])
    print(model.summary())
    datagen = ImageDataGenerator(rescale=1. / 255)
     
    train_generator = datagen.flow_from_directory(
        train_dir,
        target_size=(img_width, img_height),
        batch_size=batch_size,
        class_mode='categorical')
     
    val_generator = datagen.flow_from_directory(
        val_dir,
        target_size=(img_width, img_height),
        batch_size=batch_size,
        class_mode='categorical')
     
    test_generator = datagen.flow_from_directory(
        test_dir,
        target_size=(img_width, img_height),
        batch_size=batch_size,
        class_mode='categorical')
     
    model.fit_generator(
        train_generator,
        steps_per_epoch=nb_train_samples // batch_size,
        epochs=epochs,
        validation_data=val_generator,
        validation_steps=nb_validation_samples // batch_size)
     
    print('Сохраняем сеть')
     
    model.save("grib.h5")
    print("Сохранение завершено!")
    
    

    模型载入

    from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
    from tensorflow.python.keras.models import Sequential
    from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
    from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
    from keras.models import load_model
     
    print("Загрузка сети")
    model = load_model("grib.h5")
    print("Загрузка завершена!")
    

    报错

    /usr/bin/python3.5 /home/disk2/py/neroset/do.py
    /home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
    from ._conv import register_converters as _register_converters
    Using TensorFlow backend.
    Загрузка сети
    Traceback (most recent call last):
    File "/home/disk2/py/neroset/do.py", line 13, in module>
    model = load_model("grib.h5")
    File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model
    model = model_from_config(model_config, custom_objects=custom_objects)
    File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config
    return layer_module.deserialize(config, custom_objects=custom_objects)
    File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
    printable_module_name='layer')
    File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object
    list(custom_objects.items())))
    File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config
    model.add(layer)
    File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add
    output_tensor = layer(self.outputs[0])
    File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__
    self.build(input_shapes[0])
    File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build
    dim = input_shape[self.axis]
    TypeError: tuple indices must be integers or slices, not list

    Process finished with exit code 1

    战斗种族解释

    убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(译文:整理BatchNormalization一切正常。 不要告诉我错误是什么?我发现保存keras和规范化tensorflow不能一起工作;只需更改导入字符串即可。)

    强调文本 强调文本

    keras.preprocessing.image import ImageDataGenerator
    keras.models import Sequential
    keras.layers import Conv2D, MaxPooling2D, BatchNormalization
    keras.layers import Activation, Dropout, Flatten, Dense
    

    ##完美解决

    ##附上原文链接

    https://qa-help.ru/questions/keras-batchnormalization

    补充:keras和tensorflow模型同时读取要慎重

    项目中,先读取了一个keras模型获取模型输入size,再加载keras转tensorflow后的pb模型进行预测。

    报错:

    Attempting to use uninitialized value batch_normalization_14/moving_mean

    逛论坛,有建议加上初始化:

    sess.run(tf.global_variables_initializer())

    但是这样的话,会导致模型参数全部变成初始化数据。无法使用预测模型参数。

    最后发现,将keras模型的加载去掉即可。

    猜测原因:keras模型和tensorflow模型同时读取有坑

    import cv2
    import numpy as np
    from keras.models import load_model
    from utils.datasets import get_labels
    from utils.preprocessor import preprocess_input
    import time
    import os
    import tensorflow as tf
    from tensorflow.python.platform import gfile
     
    os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
     
    emotion_labels = get_labels('fer2013')
    emotion_target_size = (64,64)
    #emotion_model_path = './models/emotion_model.hdf5'
    #emotion_classifier = load_model(emotion_model_path)
    #emotion_target_size = emotion_classifier.input_shape[1:3]
     
    path = '/mnt/nas/cv_data/emotion/test'
    filelist = os.listdir(path)
    total_num = len(filelist)
    timeall = 0
    n = 0
     
    sess = tf.Session()
    #sess.run(tf.global_variables_initializer())
    with gfile.FastGFile("./trans_model/emotion_mode.pb", 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        sess.graph.as_default()
        tf.import_graph_def(graph_def, name='')
     
        pred = sess.graph.get_tensor_by_name("predictions/Softmax:0")
     
        ######################img##########################
        for item in filelist:
            if (item == '.DS_Store') | (item == 'Thumbs.db'):
                continue
            src = os.path.join(os.path.abspath(path), item)
            bgr_image = cv2.imread(src)
            gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
            gray_face = gray_image
            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue
     
            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
     
            input = sess.graph.get_tensor_by_name('input_1:0')
            res = sess.run(pred, {input: gray_face})
            print("src:", src)
     
            emotion_probability = np.max(res[0])
            emotion_label_arg = np.argmax(res[0])
            emotion_text = emotion_labels[emotion_label_arg]
            print("predict:", res[0], ",prob:", emotion_probability, ",label:", emotion_label_arg, ",text:",emotion_text)

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

    您可能感兴趣的文章:
    • 使用tensorflow 实现反向传播求导
    • TensorFlow的自动求导原理分析
    • tensorflow中的梯度求解及梯度裁剪操作
    • Tensorflow 如何从checkpoint文件中加载变量名和变量值
    • Python3安装tensorflow及配置过程
    • tensorflow中的数据类型dtype用法说明
    上一篇:快速搭建python爬虫管理平台
    下一篇:用 Python 写的文档批量翻译工具效果竟然超出想象
  • 相关文章
  • 

    © 2016-2020 巨人网络通讯 版权所有

    《增值电信业务经营许可证》 苏ICP备15040257号-8

    解决tensorflow 与keras 混用之坑 解决,tensorflow,与,keras,混,